Skip to main content

Skin

  • Chapter
  • First Online:
Oncological Surgical Pathology

Abstract

Evaluation of skin pathology specimens requires a wide range of diagnostic skills including an integration of dermatological clinical examination together with a systematic histopathologic evaluation of both reactive and neoplastic conditions.

This chapter reflects the complex cellular composition of the skin. Neoplastic conditions are divided according to cell of origin in epidermal, adnexal, melanocytic, neural (including Merkel cell carcinoma), soft tissue, and hematolymphoid proliferations. Emphasis is given to common malignant conditions, but unusual and rare entities are included for adequate differential diagnosis. Benign skin tumors are also discussed, and, when pertinent, reactive inflammatory conditions are described—particularly those encountered in patients being treated for either cutaneous or extracutaneous malignancies.

Awareness of clinical presentation is crucial for many dermatological inflammatory conditions; at the same time, careful selection and interpretation of immunohistochemical and molecular studies are required for an accurate pathological diagnosis of cutaneous tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold MM, Srivastava S, Fredenburgh J, Stockard CR, Myers RB, Grizzle WE. Effects of fixation and tissue processing on immunohistochemical demonstration of specific antigens. Biotech Histochem. 1996;71(5):224–30.

    PubMed  CAS  Google Scholar 

  2. Grizzle WE, Fredenburgh JL, Myers RB. Fixation of tissues. In: Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. 1. Philadelphia: Churchill Livingstone Elsevier; 2008. p. 53–74.

    Google Scholar 

  3. Billings PE, Grizzle WE. The gross room/ surgical cutup. In: Bancroft JD, Gamble M, editors. Theory and practice of histological techniques. 1. 6th ed. Philadelphia: Churchill Livingstone Elsevier; 2008. p. 75–82.

    Google Scholar 

  4. Spencer LT, Bancroft JD. Tissue processing. In: Bancroft JD, Gamble M, editors. Practice of histological techniques. 1. Philadelphia: Churchill Livingstone Elsevier; 2008. p. 83–92.

    Google Scholar 

  5. Verhagen AR, Koten JW, Chaddah VK, Patel RI. Skin diseases in Kenya. A clinical and histopathological study of 3,168 patients. Arch Dermatol. 1968;98(6):577–86.

    PubMed  CAS  Google Scholar 

  6. Hafner C, Vogt T. Seborrheic keratosis. J Dtsch Dermatol Ges. 2008;6(8):664–77.

    PubMed  Google Scholar 

  7. Mehregan AH, Rahbari H. Benign epithelial tumors of the skin part I: epidermal tumors. Cutis. 1977;19(1):43–8.

    PubMed  CAS  Google Scholar 

  8. Bon-Mardion M, Poulalhon N, Balme B, Thomas L. Ungual seborrheic keratosis. J Eur Acad Dermatol Venereol. 2010;24(9):1102–4.

    PubMed  CAS  Google Scholar 

  9. Stinco G, Errichetti E, Patrone P. Ungual seborrhoeic keratosis: report of a case and its dermoscopic features. J Eur Acad Dermatol Venereol. 2016;30(3):481–3.

    PubMed  CAS  Google Scholar 

  10. Tseng SH, Chen YT, Huang FC, Jin YT. Seborrheic keratosis of conjunctiva simulating a malignant melanoma: an immunocytochemical study with impression cytology. Ophthalmology. 1999;106(8):1516–20.

    PubMed  CAS  Google Scholar 

  11. Kim JH, Bae HW, Lee KK, Kim TI, Kim EK. Seborrheic keratosis of the conjunctiva: a case report. Korean J Ophthalmol. 2009;23(4):306–8.

    PubMed  PubMed Central  Google Scholar 

  12. Chakradeo K, Narsinghpura K, Ekladious A. Sign of Leser-Trelat. BMJ Case Rep. 2016;2016:bcr2016215316.

    Google Scholar 

  13. Ronchese F. Keratoses, cancer and “the Sign of Leser-Tr'elat”. Cancer. 1965;18:1003–6.

    PubMed  CAS  Google Scholar 

  14. Safa G, Darrieux L. Leser-Trelat sign without internal malignancy. Case Rep Oncol. 2011;4(1):175–7.

    PubMed  PubMed Central  Google Scholar 

  15. Eastman KL, Knezevich SR, Raugi GJ. Eruptive seborrheic keratoses associated with adalimumab use. J Dermatol Case Rep. 2013;7(2):60–3.

    PubMed  PubMed Central  Google Scholar 

  16. Yeatman JM, Kilkenny M, Marks R. The prevalence of seborrhoeic keratoses in an Australian population: does exposure to sunlight play a part in their frequency? Br J Dermatol. 1997;137(3):411–4.

    PubMed  CAS  Google Scholar 

  17. Kwon OS, Hwang EJ, Bae JH, Park HE, Lee JC, Youn JI, et al. Seborrheic keratosis in the Korean males: causative role of sunlight. Photodermatol Photoimmunol Photomed. 2003;19(2):73–80.

    PubMed  Google Scholar 

  18. Nakamura H, Hirota S, Adachi S, Ozaki K, Asada H, Kitamura Y. Clonal nature of seborrheic keratosis demonstrated by using the polymorphism of the human androgen receptor locus as a marker. J Invest Dermatol. 2001;116(4):506–10.

    PubMed  CAS  Google Scholar 

  19. Hafner C, Hartmann A, van Oers JM, Stoehr R, Zwarthoff EC, Hofstaedter F, et al. FGFR3 mutations in seborrheic keratoses are already present in flat lesions and associated with age and localization. Mod Pathol. 2007;20(8):895–903.

    PubMed  CAS  Google Scholar 

  20. Hafner C, van Oers JM, Hartmann A, Landthaler M, Stoehr R, Blaszyk H, et al. High frequency of FGFR3 mutations in adenoid seborrheic keratoses. J Invest Dermatol. 2006;126(11):2404–7.

    PubMed  CAS  Google Scholar 

  21. Hafner C, Lopez-Knowles E, Luis NM, Toll A, Baselga E, Fernandez-Casado A, et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc Natl Acad Sci U S A. 2007;104(33):13450–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Hafner C, Vogt T, Landthaler M, Musebeck J. Somatic FGFR3 and PIK3CA mutations are present in familial seborrhoeic keratoses. Br J Dermatol. 2008;159(1):214–7.

    PubMed  CAS  Google Scholar 

  23. Li YH, Chen G, Dong XP, Chen HD. Detection of epidermodysplasia verruciformis-associated human papillomavirus DNA in nongenital seborrhoeic keratosis. Br J Dermatol. 2004;151(5):1060–5.

    PubMed  Google Scholar 

  24. Seo EY, Lee DH, Lee Y, Cho KH, Eun HC, Chung JH. Microarray analysis reveals increased expression of DeltaNp63alpha in seborrhoeic keratosis. Br J Dermatol. 2012;166(2):337–42.

    PubMed  CAS  Google Scholar 

  25. Nakamura S, Nishioka K. Enhanced expression of p16 in seborrhoeic keratosis; a lesion of accumulated senescent epidermal cells in G1 arrest. Br J Dermatol. 2003;149(3):560–5.

    PubMed  CAS  Google Scholar 

  26. Requena L, Requena C, Cockerell CJ. Seborrheic keratosis. In: Bolognia J, Jorizzo J, Schaffer J, editors. Dermatology. II. Philadelphia: Saunders; 2012. p. 1795–815.

    Google Scholar 

  27. Mishima Y, Pinkus H. Benign mixed tumor of melanocytes and malpighian cells. Melanoacanthoma: its relationship to Bloch’s benign non-nevoid melanoepithelioma. Arch Dermatol. 1960;81:539–50.

    PubMed  CAS  Google Scholar 

  28. Kundu RV, Patterson S. Dermatologic conditions in skin of color: part II. Disorders occurring predominately in skin of color. Am Fam Physician. 2013;87(12):859–65.

    PubMed  Google Scholar 

  29. Costa OG. [Not Available]. Ann Dermatol Syphiligr (Paris). 1947;7(7–8):361.

    Google Scholar 

  30. Dunwell P, Rose A. Study of the skin disease spectrum occurring in an Afro-Caribbean population. Int J Dermatol. 2003;42(4):287–9.

    PubMed  Google Scholar 

  31. Babapour R, Leach J, Levy H. Dermatosis papulosa nigra in a young child. Pediatr Dermatol. 1993;10(4):356–8.

    PubMed  CAS  Google Scholar 

  32. Grimes PE, Arora S, Minus HR, Kenney JA Jr. Dermatosis papulosa nigra. Cutis. 1983;32(4):385–6, 92.

    PubMed  CAS  Google Scholar 

  33. Binazzi M, Simonetti S. A case of dermatosis papulosa nigra in a white man. Ann Dermatol Venereol. 1984;111(11):1013–5.

    PubMed  CAS  Google Scholar 

  34. Hafner C, Landthaler M, Mentzel T, Vogt T. FGFR3 and PIK3CA mutations in stucco keratosis and dermatosis papulosa nigra. Br J Dermatol. 2010;162(3):508–12.

    PubMed  CAS  Google Scholar 

  35. Rogers M, McCrossin I, Commens C. Epidermal nevi and the epidermal nevus syndrome. A review of 131 cases. J Am Acad Dermatol. 1989;20(3):476–88.

    PubMed  CAS  Google Scholar 

  36. Levinsohn JL, Teng J, Craiglow BG, Loring EC, Burrow TA, Mane SS, et al. Somatic HRAS p.G12S mutation causes woolly hair and epidermal nevi. J Invest Dermatol. 2014;134(4):1149–52.

    PubMed  CAS  Google Scholar 

  37. Goldman K, Don PC. Adult onset of inflammatory linear verrucous epidermal nevus in a mother and her daughter. Dermatology. 1994;189(2):170–2.

    PubMed  CAS  Google Scholar 

  38. Meschia JF, Junkins E, Hofman KJ. Familial systematized epidermal nevus syndrome. Am J Med Genet. 1992;44(5):664–7.

    PubMed  CAS  Google Scholar 

  39. Hafner C, van Oers JM, Vogt T, Landthaler M, Stoehr R, Blaszyk H, et al. Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J Clin Invest. 2006;116(8):2201–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Hafner C, Toll A, Real FX. HRAS mutation mosaicism causing urothelial cancer and epidermal nevus. N Engl J Med. 2011;365(20):1940–2.

    PubMed  CAS  Google Scholar 

  41. Bourdeaut F, Herault A, Gentien D, Pierron G, Ballet S, Reynaud S, et al. Mosaicism for oncogenic G12D KRAS mutation associated with epidermal nevus, polycystic kidneys and rhabdomyosarcoma. J Med Genet. 2010;47(12):859–62.

    PubMed  Google Scholar 

  42. Gibbs RC. Nevus unius lateris. Arch Dermatol. 1969;100(5):643–4.

    PubMed  CAS  Google Scholar 

  43. Loff HJ, Bardenstein DS, Levine MR. Systematized epidermal nevi: case report and review of clinical manifestations. Ophthal Plast Reconstr Surg. 1994;10(4):262–6.

    PubMed  CAS  Google Scholar 

  44. Mishra V, Saha A, Bandyopadhyay D, Das A. Bilateral systematized epidermolytic verrucous epidermal nevus: a rare entity. Indian J Dermatol. 2015;60(4):397–9.

    PubMed  PubMed Central  Google Scholar 

  45. Asch S, Sugarman JL. Epidermal nevus syndromes. Handb Clin Neurol. 2015;132:291–316.

    PubMed  Google Scholar 

  46. Laura FS. Epidermal nevus syndrome. Handb Clin Neurol. 2013;111:349–68.

    PubMed  Google Scholar 

  47. Happle R. The group of epidermal nevus syndromes part I. Well defined phenotypes. J Am Acad Dermatol. 2010;63(1):1–22; quiz 3–4.

    PubMed  Google Scholar 

  48. Basler RS, Jacobs SI, Taylor WB. Ichthyosis hystrix. Arch Dermatol. 1978;114(7):1059–60.

    PubMed  CAS  Google Scholar 

  49. Su WP. Histopathologic varieties of epidermal nevus. A study of 160 cases. Am J Dermatopathol. 1982;4(2):161–70.

    PubMed  CAS  Google Scholar 

  50. Toya M, Endo Y, Fujisawa A, Tanioka M, Yoshikawa Y, Tachibana T, et al. A metastasizing squamous cell carcinoma arising in a solitary epidermal nevus. Case Rep Dermatol Med. 2012;2012:109632.

    PubMed  PubMed Central  Google Scholar 

  51. Hafner C, Klein A, Landthaler M, Vogt T. Clonality of basal cell carcinoma arising in an epidermal nevus. New insights provided by molecular analysis. Dermatology. 2009;218(3):278–81.

    PubMed  Google Scholar 

  52. Riad H, Mansour K, Sada HA, Naama KA, Shaigy AA, Hussain K. Fatal metastatic cutaneous squamous cell carcinoma evolving from a localized verrucous epidermal nevus. Case Rep Dermatol. 2013;5(3):272–82.

    PubMed  PubMed Central  Google Scholar 

  53. Zheng LQ, Huang Y, Qu YJ, Zhang YH, Han XC. Multiple basal cell carcinomas arising in a verrucous epidermal nevus. J Dermatol. 2013;40(6):482–3.

    PubMed  Google Scholar 

  54. Jeon J, Kim JH, Baek YS, Kim A, Seo SH, Oh CH. Eccrine poroma and eccrine porocarcinoma in linear epidermal nevus. Am J Dermatopathol. 2014;36(5):430–2.

    PubMed  Google Scholar 

  55. Shall L, Marks R. Stucco keratoses. A clinico-pathological study. Acta Derm Venereol. 1991;71(3):258–61.

    PubMed  CAS  Google Scholar 

  56. Scott MA, Johnson WC. Lichenoid benign keratosis. J Cutan Pathol. 1976;3(5):217–21.

    PubMed  CAS  Google Scholar 

  57. Morgan MB, Stevens GL, Switlyk S. Benign lichenoid keratosis: a clinical and pathologic reappraisal of 1040 cases. Am J Dermatopathol. 2005;27(5):387–92.

    PubMed  CAS  Google Scholar 

  58. Barranco VP. Multiple benign lichenoid keratoses simulating photodermatoses: evolution from senile lentigines and their spontaneous regression. J Am Acad Dermatol. 1985;13(2 Pt 1):201–6.

    PubMed  CAS  Google Scholar 

  59. Groesser L, Herschberger E, Landthaler M, Hafner C. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis. Br J Dermatol. 2012;166(4):784–8.

    PubMed  CAS  Google Scholar 

  60. Dalton SR, Fillman EP, Altman CE, Gardner TL, Davis TL, Bastian BC, et al. Atypical junctional melanocytic proliferations in benign lichenoid keratosis. Hum Pathol. 2003;34(7):706–9.

    PubMed  Google Scholar 

  61. Chan AH, Shulman KJ, Lee BA. Differentiating regressed melanoma from regressed lichenoid keratosis. J Cutan Pathol. 2017;44(4):338–41.

    PubMed  Google Scholar 

  62. Nicholson KM, Gerami P. An immunohistochemical analysis of pseudomelanocytic nests mimicking melanoma in situ: report of 2 cases. Am J Dermatopathol. 2010;32(6):633–7.

    PubMed  Google Scholar 

  63. Silva CY, Goldberg LJ, Mahalingam M, Bhawan J, Wolpowitz D. Nests with numerous SOX10 and MiTF-positive cells in lichenoid inflammation: pseudomelanocytic nests or authentic melanocytic proliferation? J Cutan Pathol. 2011;38(10):797–800.

    PubMed  Google Scholar 

  64. Gavino AC, Woods MT, Andea AA. MART-1 is a reliable melanocytic marker in lichen planus-like keratosis: a study on 70 cases. Am J Dermatopathol. 2011;33(7):675–80.

    PubMed  Google Scholar 

  65. Dai J, Chen M, Fu X, Yu Y, Shi Z, Yu C, et al. Mutation analysis of the MVK gene in Chinese patients with disseminated superficial actinic porokeratosis. J Dermatol Sci. 2013;72(3):320–2.

    PubMed  CAS  Google Scholar 

  66. Li M, Li Z, Wang J, Ni C, Sun Z, Wilson NJ, et al. Mutations in the mevalonate pathway genes in Chinese patients with porokeratosis. J Eur Acad Dermatol Venereol. 2016;30(9):1512–7.

    PubMed  CAS  Google Scholar 

  67. Occella C, Bleidl D, Nozza P, Mascelli S, Raso A, Gimelli G, et al. Identification of an interstitial 18p11.32-p11.31 duplication including the EMILIN2 gene in a family with porokeratosis of Mibelli. PLoS One. 2013;8(4):e61311.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Malek J, Chedraoui A, Kibbi AG, Ghosn S. Genitogluteal porokeratosis: 10 years to make the diagnosis! Am J Dermatopathol. 2009;31(6):604–6.

    PubMed  Google Scholar 

  69. Tan TS, Tallon B. Pigmented porokeratosis. A further variant? Am J Dermatopathol. 2016;38(3):218–21.

    PubMed  Google Scholar 

  70. Trikha R, Wile A, King J, Ward KH, Brodell RT. Punctate follicular porokeratosis: clinical and pathologic features. Am J Dermatopathol. 2015;37(11):e134–6.

    PubMed  Google Scholar 

  71. Ehsani AH, Shakoei S, Ranjbar M. Giant porokeratosis of Mibelli with squamous cell carcinoma. Indian J Dermatol Venereol Leprol. 2014;80(1):96.

    PubMed  Google Scholar 

  72. Happle R. Cancer proneness of linear porokeratosis may be explained by allelic loss. Dermatology. 1997;195(1):20–5.

    PubMed  CAS  Google Scholar 

  73. Degos R, Civatte J. Clear-cell acanthoma. Experience of 8 years. Br J Dermatol. 1970;83(2):248–54.

    PubMed  CAS  Google Scholar 

  74. Brownstein MH, Fernando S, Shapiro L. Clear cell acanthoma: clinicopathologic analysis of 37 new cases. Am J Clin Pathol. 1973;59(3):306–11.

    PubMed  CAS  Google Scholar 

  75. Finch TM, Tan CY. Clear cell acanthoma developing on a psoriatic plaque: further evidence of an inflammatory aetiology? Br J Dermatol. 2000;142(4):842–4.

    PubMed  CAS  Google Scholar 

  76. Kovacs D, Cota C, Cardinali G, Aspite N, Bolasco G, Amantea A, et al. Expression of keratinocyte growth factor and its receptor in clear cell acanthoma. Exp Dermatol. 2006;15(10):762–8.

    PubMed  CAS  Google Scholar 

  77. Bugatti L, Filosa G, Broganelli P, Tomasini C. Psoriasis-like dermoscopic pattern of clear cell acanthoma. J Eur Acad Dermatol Venereol. 2003;17(4):452–5.

    PubMed  Google Scholar 

  78. Akiyama M, Hayakawa K, Watanabe Y, Nishikawa T. Lectin-binding sites in clear cell acanthoma. J Cutan Pathol. 1990;17(4):197–201.

    PubMed  CAS  Google Scholar 

  79. Penneys NS, Nadji M, Ziegels-Weissman J. Clear cell acanthoma: not of sweat gland origin. Acta Derm Venereol. 1981;61(6):569–70.

    PubMed  CAS  Google Scholar 

  80. Langtry JA, Torras H, Palou J, Lecha M, Mascaro JM. Giant clear cell acanthoma in an atypical location. J Am Acad Dermatol. 1989;21(2 Pt 1):313–5.

    PubMed  CAS  Google Scholar 

  81. Veiga RR, Barros RS, Santos JE, Abreu Junior JM, Bittencourt Mde J, Miranda MF. Clear cell acanthoma of the areola and nipple: clinical, histopathological, and immunohistochemical features of two Brazilian cases. An Bras Dermatol. 2013;88(1):84–9.

    PubMed  PubMed Central  Google Scholar 

  82. Cavicchini S, Nazzaro G, Marchetti S. Fast-growing ‘giant’ clear cell acanthoma detected by dermoscopy during treatment with infliximab in a psoriatic patient. J Eur Acad Dermatol Venereol. 2015;29(8):1642–4.

    PubMed  CAS  Google Scholar 

  83. Inaloz HS, Patel G, Knight AG. Polypoid clear cell acanthoma: case report. J Eur Acad Dermatol Venereol. 2000;14(6):511–2.

    PubMed  CAS  Google Scholar 

  84. Jacyk WK, Baran W, Essop A. Multiple pigmented clear cell acanthoma in an African patient. J Eur Acad Dermatol Venereol. 2016;30(3):494–6.

    PubMed  CAS  Google Scholar 

  85. Monari P, Farisoglio C, Gualdi G, Botali G, Ungari M, Calzavara-Pinton P. Multiple eruptive clear cell acanthoma. J Dermatol Case Rep. 2010;4(2):25–7.

    PubMed  PubMed Central  Google Scholar 

  86. Saeki H, Matsuzaki H, Ito K, Nobeyama Y, Nakagawa H. Pigmented clear cell acanthoma of the finger simulating pigmented nevus. Int J Dermatol. 2014;53(12):e579–81.

    PubMed  Google Scholar 

  87. Grunwald MH, Rothem A, Halevy S. Atypical clear cell acanthoma. Int J Dermatol. 1991;30(12):848–50.

    PubMed  CAS  Google Scholar 

  88. Lin CY, Lee LY, Kuo TT. Malignant clear cell acanthoma: report of a rare case of clear cell acanthoma-like tumor with malignant features. Am J Dermatopathol. 2016;38(7):553–6.

    PubMed  Google Scholar 

  89. Metze D, Rutten A. Granular parakeratosis – a unique acquired disorder of keratinization. J Cutan Pathol. 1999;26(7):339–52.

    PubMed  CAS  Google Scholar 

  90. Northcutt AD, Nelson DM, Tschen JA. Axillary granular parakeratosis. J Am Acad Dermatol. 1991;24(4):541–4.

    PubMed  CAS  Google Scholar 

  91. Wallace CA, Pichardo RO, Yosipovitch G, Hancox J, Sangueza OP. Granular parakeratosis: a case report and literature review. J Cutan Pathol. 2003;30(5):332–5.

    PubMed  Google Scholar 

  92. Chang MW, Kaufmann JM, Orlow SJ, Cohen DE, Mobini N, Kamino H. Infantile granular parakeratosis: recognition of two clinical patterns. J Am Acad Dermatol. 2004;50(5 Suppl):S93–6.

    PubMed  Google Scholar 

  93. Resnik KS. Granular parakeratotic acanthoma is not adenoid seborrheic keratosis. Am J Dermatopathol. 2008;30(3):300–1.

    PubMed  Google Scholar 

  94. Resnik KS, Kantor GR, DiLeonardo M. Granular parakeratotic acanthoma. Am J Dermatopathol. 2005;27(5):393–6.

    PubMed  Google Scholar 

  95. Resnik KS, DiLeonardo M. Incidental granular parakeratotic cornification in carcinomas. Am J Dermatopathol. 2007;29(3):264–9.

    PubMed  Google Scholar 

  96. Mahaisavariya P, Cohen PR, Rapini RP. Incidental epidermolytic hyperkeratosis. Am J Dermatopathol. 1995;17(1):23–8.

    PubMed  CAS  Google Scholar 

  97. Conlin PA, Rapini RP. Epidermolytic hyperkeratosis associated with melanocytic nevi: a report of 53 cases. Am J Dermatopathol. 2002;24(1):23–5.

    PubMed  Google Scholar 

  98. Kazlouskaya V, Lambe J, Elston D. Solitary epidermolytic acanthoma. J Cutan Pathol. 2013;40(8):701–7.

    PubMed  Google Scholar 

  99. Shapiro L, Baraf CS. Isolated epidermolytic acanthoma. A solitary tumor showing granular degeneration. Arch Dermatol. 1970;101(2):220–3.

    PubMed  CAS  Google Scholar 

  100. Abbas O, Wieland CN, Goldberg LJ. Solitary epidermolytic acanthoma: a clinical and histopathological study. J Eur Acad Dermatol Venereol. 2011;25(2):175–80.

    PubMed  CAS  Google Scholar 

  101. Leonardi C, Zhu W, Kinsey W, Penneys NS. Epidermolytic acanthoma does not contain human papillomavirus DNA. J Cutan Pathol. 1991;18(2):103–5.

    PubMed  CAS  Google Scholar 

  102. Adachi T, Tanese K, Ouchi T, Igawa S, Nakano H, Ishiko A. Case of isolated epidermolytic acanthoma: genetic and immunohistochemical analysis. J Dermatol. 2016;43(8):974–5.

    PubMed  Google Scholar 

  103. Egozi-Reinman E, Avitan-Hersh E, Barzilai A, Indelman M, Bergman R. Epidermolytic acanthoma of the genitalia does not show mutations in KRT1 or KRT10. Am J Dermatopathol. 2016;38(2):164–5.

    PubMed  Google Scholar 

  104. Sanchez-Carpintero I, Espana A, Idoate MA. Disseminated epidermolytic acanthoma probably related to trauma. Br J Dermatol. 1999;141(4):728–30.

    PubMed  CAS  Google Scholar 

  105. Winkler M. Knötchenförmige Erkrankung am Helix (Chondrodermatitis nodularis chronica helicis). Arch Dermatol Syph. 1916;121:278–85.

    Google Scholar 

  106. Oelzner S, Elsner P. Bilateral chondrodermatitis nodularis chronica helicis on the free border of the helix in a woman. J Am Acad Dermatol. 2003;49(4):720–2.

    PubMed  Google Scholar 

  107. Kaur RR, Lee AD, Feldman SR. Bilateral chondrodermatitis nodularis chronica helicis on the antihelix in an elderly woman. Int J Dermatol. 2010;49(4):472–4.

    PubMed  Google Scholar 

  108. Sasaki T, Nishizawa H, Sugita Y. Chondrodermatitis nodularis helicis in childhood dermatomyositis. Br J Dermatol. 1999;141(2):363–5.

    PubMed  CAS  Google Scholar 

  109. Grigoryants V, Qureshi H, Patterson JW, Lin KY. Pediatric chondrodermatitis nodularis helicis. J Craniofac Surg. 2007;18(1):228–31.

    PubMed  Google Scholar 

  110. Upile T, Patel NN, Jerjes W, Singh NU, Sandison A, Michaels L. Advances in the understanding of chondrodermatitis nodularis chronica helices: the perichondrial vasculitis theory. Clin Otolaryngol. 2009;34(2):147–50.

    PubMed  CAS  Google Scholar 

  111. Magro CM, Frambach GE, Crowson AN. Chondrodermatitis nodularis helicis as a marker of internal disease [corrected] associated with microvascular injury. J Cutan Pathol. 2005;32(5):329–33.

    PubMed  Google Scholar 

  112. Goette DK. Chondrodermatitis nodularis chronica helicis: a perforating necrobiotic granuloma. J Am Acad Dermatol. 1980;2(2):148–54.

    PubMed  CAS  Google Scholar 

  113. Shaffer B, Beerman H. Lichen simplex chronicus and its variants; a discussion of certain psychodynamic mechanisms and clinical and histopathologic correlations. AMA Arch Derm Syphilol. 1951;64(3):340–51.

    PubMed  CAS  Google Scholar 

  114. Jones RO. Lichen simplex chronicus. Clin Podiatr Med Surg. 1996;13(1):47–54.

    PubMed  CAS  Google Scholar 

  115. Rimoin LP, Kwatra SG, Yosipovitch G. Female-specific pruritus from childhood to postmenopause: clinical features, hormonal factors, and treatment considerations. Dermatol Ther. 2013;26(2):157–67.

    PubMed  Google Scholar 

  116. Burton JL. Lichenification and lichen simplex. In: Champion RH, Burton JL, Ebling FJG, editors. Rook/Wilkinson/Ebling textbook of dermatology. Oxford/Boston: Blackwell Scientific Publications; 1992.

    Google Scholar 

  117. Stewart KM. Clinical care of vulvar pruritus, with emphasis on one common cause, lichen simplex chronicus. Dermatol Clin. 2010;28(4):669–80.

    CAS  PubMed  Google Scholar 

  118. Rajalakshmi R, Thappa DM, Jaisankar TJ, Nath AK. Lichen simplex chronicus of anogenital region: a clinico-etiological study. Indian J Dermatol Venereol Leprol. 2011;77(1):28–36.

    PubMed  CAS  Google Scholar 

  119. Liao YH, Lin CC, Tsai PP, Shen WC, Sung FC, Kao CH. Increased risk of lichen simplex chronicus in people with anxiety disorder: a nationwide population-based retrospective cohort study. Br J Dermatol. 2014;170(4):890–4.

    PubMed  Google Scholar 

  120. Lotti T, Buggiani G, Prignano F. Prurigo nodularis and lichen simplex chronicus. Dermatol Ther. 2008;21(1):42–6.

    PubMed  Google Scholar 

  121. Solak O, Kulac M, Yaman M, Karaca S, Toktas H, Kirpiko O, et al. Lichen simplex chronicus as a symptom of neuropathy. Clin Exp Dermatol. 2009;34(4):476–80.

    PubMed  CAS  Google Scholar 

  122. Fernandez-Flores A. Lesions with an epidermal hyperplastic pattern: morphologic clues in the differential diagnosis. Am J Dermatopathol. 2016;38(1):1–16; quiz 7–9.

    PubMed  Google Scholar 

  123. Barr RJ, Young EM Jr. Psoriasiform and related papulosquamous disorders. J Cutan Pathol. 1985;12(5):412–25.

    PubMed  CAS  Google Scholar 

  124. Rowland Payne CM, Wilkinson JD, McKee PH, Jurecka W, Black MM. Nodular prurigo – a clinicopathological study of 46 patients. Br J Dermatol. 1985;113(4):431–9.

    PubMed  CAS  Google Scholar 

  125. Zeidler C, Stander S. The pathogenesis of Prurigo nodularis – ‘Super-Itch’ in exploration. Eur J Pain. 2016;20(1):37–40.

    PubMed  CAS  Google Scholar 

  126. Vaidya DC, Schwartz RA. Prurigo nodularis: a benign dermatosis derived from a persistent pruritus. Acta Dermatovenerol Croat. 2008;16(1):38–44.

    PubMed  Google Scholar 

  127. Savoia F, Casadio C, Tabanelli M, Gaddoni G, Savoia F, Patrizi A, et al. Prurigo nodularis as the first manifestation of a chronic autoimmune cholestatic hepatitis. Int J Dermatol. 2011;50(12):1588–9.

    PubMed  Google Scholar 

  128. Fostini AC, Girolomoni G, Tessari G. Prurigo nodularis: an update on etiopathogenesis and therapy. J Dermatolog Treat. 2013;24(6):458–62.

    PubMed  CAS  Google Scholar 

  129. Amer A, Fischer H. Prurigo nodularis in a 9-year-old girl. Clin Pediatr (Phila). 2009;48(1):93–5.

    Google Scholar 

  130. Park IU, Introcaso C, Dunne EF. Human papillomavirus and genital warts: a review of the evidence for the 2015 centers for disease control and prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis. 2015;61(Suppl 8):S849–55.

    PubMed  Google Scholar 

  131. Mullegger RR, Haring NS, Glatz M. Skin infections in pregnancy. Clin Dermatol. 2016;34(3):368–77.

    PubMed  Google Scholar 

  132. Wieland U, Kreuter A, Pfister H. Human papillomavirus and immunosuppression. Curr Probl Dermatol. 2014;45:154–65.

    PubMed  Google Scholar 

  133. Weiss DA, Yang G, Myers JB, Breyer BN. Condyloma overgrowth caused by immune reconstitution inflammatory syndrome. Urology. 2009;74(5):1013–4.

    PubMed  Google Scholar 

  134. Steben M, Garland SM. Genital warts. Best Pract Res Clin Obstet Gynaecol. 2014;28(7):1063–73.

    PubMed  Google Scholar 

  135. Koukoura O, Klados G, Strataki M, Daponte A. A rapidly growing vulvar condyloma acuminatum in a young patient. BMJ Case Rep. 2015;2015

    Google Scholar 

  136. Pinto AR, Guedes-Martins L, Marques C, Cabral JM. Buschke-Lowenstein tumor. Acta Medica Port. 2012;25(5):345–7.

    Google Scholar 

  137. Tripoli M, Cordova A, Maggi F, Moschella F. Giant condylomata (Buschke-Lowenstein tumours): our case load in surgical treatment and review of the current therapies. Eur Rev Med Pharmacol Sci. 2012;16(6):747–51.

    PubMed  CAS  Google Scholar 

  138. Cobb MW. Human papillomavirus infection. J Am Acad Dermatol. 1990;22(4):547–66.

    PubMed  CAS  Google Scholar 

  139. Beutner KR, Becker TM, Stone KM. Epidemiology of human papillomavirus infections. Dermatol Clin. 1991;9(2):211–8.

    PubMed  CAS  Google Scholar 

  140. Aguilera-Barrantes I, Magro C, Nuovo GJ. Verruca vulgaris of the vulva in children and adults: a nonvenereal type of vulvar wart. Am J Surg Pathol. 2007;31(4):529–35.

    PubMed  Google Scholar 

  141. Payne DA, Sanchez R, Tyring SK. Cutaneous verruca with genital human papillomavirus in a 2-year-old girl. Am J Dermatopathol. 1997;19(3):258–60.

    PubMed  CAS  Google Scholar 

  142. Kilkenny M, Merlin K, Young R, Marks R. The prevalence of common skin conditions in Australian school students: 1. Common, plane and plantar viral warts. Br J Dermatol. 1998;138(5):840–5.

    PubMed  CAS  Google Scholar 

  143. Keefe M, al-Ghamdi A, Coggon D, Maitland NJ, Egger P, Keefe CJ, et al. Cutaneous warts in butchers. Br J Dermatol. 1994;130(1):9–14.

    PubMed  CAS  Google Scholar 

  144. Shangkuan WC, Lin MY. Verruca vulgaris of tympanic membrane treated with topical immunotherapy. Am J Otolaryngol. 2014;35(2):242–5.

    PubMed  Google Scholar 

  145. Desai VD, Sharma R, Bailoor DN. Extensive mucocutaneous verruca vulgaris in a nonimmunocompromised patient. Int J Clin Pediatr Dent. 2011;4(1):65–8.

    PubMed  PubMed Central  Google Scholar 

  146. Feller L, Khammissa RA, Wood NH, Marnewick JC, Meyerov R, Lemmer J. HPV-associated oral warts. SADJ. 2011;66(2):82–5.

    PubMed  CAS  Google Scholar 

  147. Ural A, Arslan S, Ersoz S, Deger B. Verruca vulgaris of the tongue: a case report with a literature review. Bosn J Basic Med Sci. 2014;14(3):136–8.

    PubMed  PubMed Central  Google Scholar 

  148. Sandoval M, Ortiz M, Diaz C, Majerson D, Molgo M. Cutaneous manifestations in renal transplant recipients of Santiago, Chile. Transplant Proc. 2009;41(9):3752–4.

    PubMed  CAS  Google Scholar 

  149. Iraji F, Kiani A, Shahidi S, Vahabi R. Histopathology of skin lesions with warty appearance in renal allograft recipients. Am J Dermatopathol. 2002;24(4):324–5.

    PubMed  Google Scholar 

  150. McLelland J, Rees A, Williams G, Chu T. The incidence of immunosuppression-related skin disease in long-term transplant patients. Transplantation. 1988;46(6):871–4.

    PubMed  CAS  Google Scholar 

  151. Lanjewar DN, Bhosale A, Iyer A. Spectrum of dermatopathologic lesions associated with HIV/AIDS in India. Indian J Pathol Microbiol. 2002;45(3):293–8.

    PubMed  CAS  Google Scholar 

  152. Hivnor C, Shepard JW, Shapiro MS, Vittorio CC. Intravenous cidofovir for recalcitrant verruca vulgaris in the setting of HIV. Arch Dermatol. 2004;140(1):13–4.

    PubMed  Google Scholar 

  153. Milburn PB, Brandsma JL, Goldsman CI, Teplitz ED, Heilman EI. Disseminated warts and evolving squamous cell carcinoma in a patient with acquired immunodeficiency syndrome. J Am Acad Dermatol. 1988;19(2 Pt 2):401–5.

    PubMed  CAS  Google Scholar 

  154. Prose NS, von Knebel-Doeberitz C, Miller S, Milburn PB, Heilman E. Widespread flat warts associated with human papillomavirus type 5: a cutaneous manifestation of human immunodeficiency virus infection. J Am Acad Dermatol. 1990;23(5 Pt 2):978–81.

    PubMed  CAS  Google Scholar 

  155. Bellew SG, Quartarolo N, Janniger CK. Childhood warts: an update. Cutis. 2004;73(6):379–84.

    PubMed  Google Scholar 

  156. Winn AE, Kentosh J, Bingham JL. Verruca plana as a complication of CO2 laser treatment: a case report. J Cosmet Laser Ther. 2015;17(2):96–8.

    PubMed  Google Scholar 

  157. Tagami H, Ogino A, Takigawa M, Imamura S, Ofuji S. Regression of plane warts following spontaneous inflammation. An histopathological study. Br J Dermatol. 1974;90(2):147–54.

    PubMed  CAS  Google Scholar 

  158. Weedon D, Robertson I. Regressing plane warts – an ultrastructural study. Australas J Dermatol. 1978;19(2):65–8.

    PubMed  CAS  Google Scholar 

  159. Melton JL, Rasmussen JE. Clinical manifestations of human papillomavirus infection in nongenital sites. Dermatol Clin. 1991;9(2):219–33.

    PubMed  CAS  Google Scholar 

  160. Ashida M, Ueda M, Kunisada M, Ichihashi M, Terai M, Sata T, et al. Protean manifestations of human papillomavirus type 60 infection on the extremities. Br J Dermatol. 2002;146(5):885–90.

    PubMed  CAS  Google Scholar 

  161. Simunovic C, Shinohara MM. Complications of decorative tattoos: recognition and management. Am J Clin Dermatol. 2014;15(6):525–36.

    PubMed  Google Scholar 

  162. Cui W, McGregor DH, Stark SP, Ulusarac O, Mathur SC. Pseudoepitheliomatous hyperplasia – an unusual reaction following tattoo: report of a case and review of the literature. Int J Dermatol. 2007;46(7):743–5.

    PubMed  Google Scholar 

  163. Ansari M, Azmoodeh Ardalan F, Najafi M, Goodarzi A, Ghanadan A. Primary cutaneous lymphoma-associated pseudoepitheliomatous hyperplasia masquerading as squamous cell carcinoma in a young adult. Acta Med Iran. 2015;53(12):785–8.

    PubMed  Google Scholar 

  164. Price A, Miller JH, Junkins-Hopkins JM. Pseudocarcinomatous hyperplasia in anaplastic large cell lymphoma, a mimicker of poorly differentiated squamous cell carcinoma: report of a case and review of the literature. J Cutan Pathol. 2015;42(11):863–9.

    PubMed  Google Scholar 

  165. Ginsberg D, Hill H, Wilson B, Plaza JA, Schieke SM. Pseudocarcinomatous hyperplasia mimicking squamous cell carcinoma in a case of CD56-positive cytotoxic T-cell lymphoma. J Cutan Pathol. 2015;42(3):194–8.

    PubMed  Google Scholar 

  166. Torrijos-Aguilar A, Alegre-de Miquel V, Pitarch-Bort G, Mercader-Garcia P, Fortea-Baixauli JM. Cutaneous granular cell tumor: a clinical and pathologic analysis of 34 cases. Actas Dermosifiliogr. 2009;100(2):126–32.

    PubMed  Google Scholar 

  167. Goel R, Wallace ML. Pseudoepitheliomatous hyperplasia secondary to cutaneous aspergillus. Am J Dermatopathol. 2001;23(3):224–6.

    PubMed  CAS  Google Scholar 

  168. Pedreira Rdo P, Guimaraes EP, de Carli ML, Magalhaes EM, Pereira AA, Hanemann JA. Paracoccidioidomycosis mimicking squamous cell carcinoma on the dorsum of the tongue and review of published literature. Mycopathologia. 2014;177(5–6):325–9.

    PubMed  Google Scholar 

  169. Bandyopadhyay A, Majumdar K, Gangopadhyay M, Banerjee S. Cutaneous chromoblastomycosis mimicking tuberculosis verrucosa cutis: look for copper pennies! Turk Patoloji Derg. 2015;31(3):223–5.

    PubMed  Google Scholar 

  170. Motswaledi HM, Monyemangene FM, Maloba BR, Nemutavhanani DL. Blastomycosis: a case report and review of the literature. Int J Dermatol. 2012;51(9):1090–3.

    PubMed  Google Scholar 

  171. Tangjitgamol S, Loharamtaweethong K, Thawaramara T, Chanpanitkitchot S. Vulvar pseudoepitheliomatous hyperplasia associated with herpes simplex virus type II mimicking cancer in an immunocompromised patient. J Obstet Gynaecol Res. 2014;40(1):255–8.

    PubMed  Google Scholar 

  172. Su A, Ra S, Li X, Zhou J, Binder S. Differentiating cutaneous squamous cell carcinoma and pseudoepitheliomatous hyperplasia by multiplex qRT-PCR. Mod Pathol. 2013;26(11):1433–7.

    PubMed  CAS  Google Scholar 

  173. Ra SH, Su A, Li X, Binder S. Molecularly enriched pathways and differentially expressed genes distinguishing cutaneous squamous cell carcinoma from pseudoepitheliomatous hyperplasia. Diagn Mol Pathol. 2013;22(1):41–7.

    PubMed  CAS  Google Scholar 

  174. Wu X, Elkin EE, Marghoob AA. Burden of basal cell carcinoma in USA. Future Oncol. 2015;11(22):2967–74.

    PubMed  CAS  Google Scholar 

  175. Marzuka AG, Book SE. Basal cell carcinoma: pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J Biol Med. 2015;88(2):167–79.

    PubMed  PubMed Central  Google Scholar 

  176. Asgari MM, Moffet HH, Ray GT, Quesenberry CP. Trends in basal cell carcinoma incidence and identification of high-risk subgroups, 1998–2012. JAMA Dermatol. 2015;151(9):976–81.

    PubMed  Google Scholar 

  177. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 2010;146(3):283–7.

    PubMed  Google Scholar 

  178. Athas WF, Hunt WC, Key CR. Changes in nonmelanoma skin cancer incidence between 1977–1978 and 1998–1999 in Northcentral New Mexico. Cancer Epidemiol Biomark Prev. 2003;12(10):1105–8.

    Google Scholar 

  179. Cahoon EK, Kitahara CM, Ntowe E, Bowen EM, Doody MM, Alexander BH, et al. Female estrogen-related factors and incidence of basal cell carcinoma in a nationwide US cohort. J Clin Oncol. 2015;33(34):4058–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Christenson LJ, Borrowman TA, Vachon CM, Tollefson MM, Otley CC, Weaver AL, et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA. 2005;294(6):681–90.

    PubMed  CAS  Google Scholar 

  181. Griffin JR, Cohen PR, Tschen JA, Mullans EA, Schulze KE, Martinelli PT, et al. Basal cell carcinoma in childhood: case report and literature review. J Am Acad Dermatol. 2007;57(5 Suppl):S97–102.

    PubMed  Google Scholar 

  182. Nagarajan P, Asgari MM, Green AC, Guhan SM, Arron ST, Proby CM, et al. Keratinocyte Carcinomas: current concepts and future research priorities. Clin Cancer Res. 2018; https://doi.org/10.1158/1078-0432.CCR-18-1122.

  183. Kyrgidis A, Tzellos TG, Vahtsevanos K, Triaridis S. New concepts for basal cell carcinoma. Demographic, clinical, histological risk factors, and biomarkers. A systematic review of evidence regarding risk for tumor development, susceptibility for second primary and recurrence. J Surg Res. 2010;159(1):545–56.

    PubMed  Google Scholar 

  184. Bauer A, Diepgen TL, Schmitt J. Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br J Dermatol. 2011;165(3):612–25.

    PubMed  CAS  Google Scholar 

  185. Correia de Sa TR, Silva R, Lopes JM. Basal cell carcinoma of the skin (part 1): epidemiology, pathology and genetic syndromes. Future Oncol. 2015;11(22):3011–21.

    PubMed  CAS  Google Scholar 

  186. Karagas MR, Zens MS, Li Z, Stukel TA, Perry AE, Gilbert-Diamond D, et al. Early-onset basal cell carcinoma and indoor tanning: a population-based study. Pediatrics. 2014;134(1):e4–12.

    PubMed  PubMed Central  Google Scholar 

  187. Zwald FO, Brown M. Skin cancer in solid organ transplant recipients: advances in therapy and management: part I. Epidemiology of skin cancer in solid organ transplant recipients. J Am Acad Dermatol. 2011;65(2):253–61; quiz 62.

    Google Scholar 

  188. Silverberg MJ, Leyden W, Warton EM, Quesenberry CP Jr, Engels EA, Asgari MM. HIV infection status, immunodeficiency, and the incidence of non-melanoma skin cancer. J Natl Cancer Inst. 2013;105(5):350–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Yanik EL, Pfeiffer RM, Freedman DM, Weinstock MA, Cahoon EK, Arron ST, et al. Spectrum of immune-related conditions associated with risk of keratinocyte cancers among elderly adults in the United States. Cancer Epidemiol Biomark Prev. 2017;26(7):998–1007.

    CAS  Google Scholar 

  190. Oram Y, Orengo I, Griego RD, Rosen T, Thornby J. Histologic patterns of basal cell carcinoma based upon patient immunostatus. Dermatol Surg. 1995;21(7):611–4.

    PubMed  CAS  Google Scholar 

  191. Reinau D, Surber C, Jick SS, Meier CR. Epidemiology of basal cell carcinoma in the United Kingdom: incidence, lifestyle factors, and comorbidities. Br J Cancer. 2014;111(1):203–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Dusingize JC, Olsen CM, Pandeya NP, Subramaniam P, Thompson BS, Neale RE, et al. Cigarette smoking and the risks of basal cell carcinoma and squamous cell carcinoma. J Invest Dermatol. 2017;137(8):1700–8.

    PubMed  CAS  Google Scholar 

  193. Kyrgidis A, Vahtsevanos K, Tzellos TG, Xirou P, Kitikidou K, Antoniades K, et al. Clinical, histological and demographic predictors for recurrence and second primary tumours of head and neck basal cell carcinoma. A 1062 patient-cohort study from a tertiary cancer referral hospital. Eur J Dermatol. 2010;20(3):276–82.

    PubMed  Google Scholar 

  194. Rubin AI, Chen EH, Ratner D. Basal-cell carcinoma. N Engl J Med. 2005;353(21):2262–9.

    PubMed  CAS  Google Scholar 

  195. Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Svard J, et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci U S A. 2011;108(10):4099–104.

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Alarcon-Del Agua I, Bernardos-Garcia C, Bustos-Jimenez M, Serrano-Borrero I, Casado-Maestre MD, Docobo-Durantez F. Malignant degeneration in pilonidal disease. Cir Cir. 2011;79(4):346–50.

    PubMed  Google Scholar 

  197. Noodleman FR, Pollack SV. Trauma as a possible etiologic factor in basal cell carcinoma. J Dermatol Surg Oncol. 1986;12(8):841–6.

    PubMed  CAS  Google Scholar 

  198. Koga Y, Sawada Y. Basal cell carcinoma developing on a burn scar. Burns. 1997;23(1):75–7.

    PubMed  CAS  Google Scholar 

  199. Harris B, Eaglstein WH, Falanga V. Basal cell carcinoma arising in venous ulcers and mimicking granulation tissue. J Dermatol Surg Oncol. 1993;19(2):150–2.

    PubMed  CAS  Google Scholar 

  200. Cribier B, Scrivener Y, Grosshans E. Tumors arising in nevus sebaceus: a study of 596 cases. J Am Acad Dermatol. 2000;42(2 Pt 1):263–8.

    PubMed  CAS  Google Scholar 

  201. Turner CD, Shea CR, Rosoff PM. Basal cell carcinoma originating from a nevus sebaceus on the scalp of a 7-year-old boy. J Pediatr Hematol Oncol. 2001;23(4):247–9.

    PubMed  CAS  Google Scholar 

  202. Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8(10):743–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Fan Z, Li J, Du J, Zhang H, Shen Y, Wang CY, et al. A missense mutation in PTCH2 underlies dominantly inherited NBCCS in a Chinese family. J Med Genet. 2008;45(5):303–8.

    PubMed  CAS  Google Scholar 

  204. Pastorino L, Ghiorzo P, Nasti S, Battistuzzi L, Cusano R, Marzocchi C, et al. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am J Med Genet A. 2009;149A(7):1539–43.

    PubMed  CAS  Google Scholar 

  205. Lam C, Ou JC, Billingsley EM. “PTCH”-ing it together: a basal cell nevus syndrome review. Dermatol Surg. 2013;39(11):1557–72.

    PubMed  CAS  Google Scholar 

  206. Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2.

    PubMed  CAS  Google Scholar 

  207. Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol. 2005;152(1):43–51.

    PubMed  CAS  Google Scholar 

  208. Watson A, Kent P, Alam M, Paller AS, Umbach DM, Yoon JW, et al. GLI1 genotypes do not predict basal cell carcinoma risk: a case control study. Mol Cancer. 2009;8:113.

    PubMed  PubMed Central  Google Scholar 

  209. Schulman JM, Oh DH, Sanborn JZ, Pincus L, McCalmont TH, Cho RJ. Multiple hereditary infundibulocystic basal cell carcinoma syndrome associated with a germline SUFU mutation. JAMA Dermatol. 2016;152(3):323–7.

    PubMed  Google Scholar 

  210. Briggaman RA. Hereditary epidermolysis bullosa with special emphasis on newly recognized syndromes and complications. Dermatol Clin. 1983;1:263–79.

    Google Scholar 

  211. Fine JD, Johnson LB, Weiner M, Li KP, Suchindran C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986–2006. J Am Acad Dermatol. 2009;60(2):203–11.

    PubMed  Google Scholar 

  212. Castori M, Morrone A, Kanitakis J, Grammatico P. Genetic skin diseases predisposing to basal cell carcinoma. Eur J Dermatol. 2012;22(3):299–309.

    PubMed  Google Scholar 

  213. Parren LJ, Frank J. Hereditary tumour syndromes featuring basal cell carcinomas. Br J Dermatol. 2011;165(1):30–4.

    PubMed  CAS  Google Scholar 

  214. Halkud R, Shenoy AM, Naik SM, Chavan P, Sidappa KT, Biswas S. Xeroderma pigmentosum: clinicopathological review of the multiple oculocutaneous malignancies and complications. Indian J Surg Oncol. 2014;5(2):120–4.

    PubMed  PubMed Central  Google Scholar 

  215. Abuzahra F, Parren LJ, Frank J. Multiple familial and pigmented basal cell carcinomas in early childhood – Bazex-Dupre-Christol syndrome. J Eur Acad Dermatol Venereol. 2012;26(1):117–21.

    PubMed  CAS  Google Scholar 

  216. Soehnge H, Ouhtit A, Ananthaswamy ON. Mechanisms of induction of skin cancer by UV radiation. Front Biosci. 1997;2:d538–51.

    PubMed  CAS  Google Scholar 

  217. Segerback D, Strozyk M, Snellman E, Hemminki K. Repair of UV dimers in skin DNA of patients with basal cell carcinoma. Cancer Epidemiol Biomark Prev. 2008;17(9):2388–92.

    Google Scholar 

  218. Stacey SN, Sulem P, Gudbjartsson DF, Jonasdottir A, Thorleifsson G, Gudjonsson SA, et al. Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma. Hum Mol Genet. 2014;23(11):3045–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Pardo LM, Li WQ, Hwang SJ, Verkouteren JA, Hofman A, Uitterlinden AG, et al. Genome-wide association studies of multiple keratinocyte cancers. PLoS One. 2017;12(1):e0169873.

    PubMed  PubMed Central  Google Scholar 

  220. Nan H, Xu M, Kraft P, Qureshi AA, Chen C, Guo Q, et al. Genome-wide association study identifies novel alleles associated with risk of cutaneous basal cell carcinoma and squamous cell carcinoma. Hum Mol Genet. 2011;20(18):3718–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  221. Box NF, Duffy DL, Irving RE, Russell A, Chen W, Griffyths LR, et al. Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol. 2001;116(2):224–9.

    PubMed  CAS  Google Scholar 

  222. Gudbjartsson DF, Sulem P, Stacey SN, Goldstein AM, Rafnar T, Sigurgeirsson B, et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet. 2008;40(7):886–91.

    PubMed  CAS  Google Scholar 

  223. Yoshizawa J, Abe Y, Oiso N, Fukai K, Hozumi Y, Nakamura T, et al. Variants in melanogenesis-related genes associate with skin cancer risk among Japanese populations. J Dermatol. 2014;41(4):296–302.

    PubMed  Google Scholar 

  224. Han J, Qureshi AA, Nan H, Zhang J, Song Y, Guo Q, et al. A germline variant in the interferon regulatory factor 4 gene as a novel skin cancer risk locus. Cancer Res. 2011;71(5):1533–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  225. Nan H, Kraft P, Hunter DJ, Han J. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int J Cancer. 2009;125(4):909–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  226. Kiprono SK, Chaula BM, Beltraminelli H. Histological review of skin cancers in African Albinos: a 10-year retrospective review. BMC Cancer. 2014;14:157.

    PubMed  PubMed Central  Google Scholar 

  227. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41(2):221–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  228. Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M, et al. New common variants affecting susceptibility to basal cell carcinoma. Nat Genet. 2009;41(8):909–14.

    PubMed  PubMed Central  CAS  Google Scholar 

  229. Stacey SN, Helgason H, Gudjonsson SA, Thorleifsson G, Zink F, Sigurdsson A, et al. New basal cell carcinoma susceptibility loci. Nat Commun. 2015;6:6825.

    PubMed  CAS  Google Scholar 

  230. Lateo S, Charlton FG, Ormond P. A palmar injury that failed to heal. Diagnosis: basal cell carcinoma of the palm. Clin Exp Dermatol. 2006;31(5):731–2.

    PubMed  CAS  Google Scholar 

  231. Hone NL, Grandhi R, Ingraffea AA. Basal cell carcinoma on the sole: an easily missed cancer. Case Rep Dermatol. 2016;8(3):283–6.

    PubMed  PubMed Central  Google Scholar 

  232. Abeldano AM, Tiscornia J, Cendeno LP, Brea P, Chouela EN. Basal cell carcinoma in palm and sole. Skinmed. 2006;5(1):40–2.

    PubMed  Google Scholar 

  233. Mleczko A, Franke I, Pokrywka A, Gollnick H, Leverkus M. BerEP4-negative basal cell carcinoma on the palm: case report and review of the literature. J Dtsch Dermatol Ges. 2011;9(2):140–3.

    PubMed  Google Scholar 

  234. Chun KA, Cohen PR. Basal cell carcinoma of the nipple-areola complex: a comprehensive review of the world literature. Dermatol Ther (Heidelb). 2016;6(3):379–95.

    Google Scholar 

  235. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16(4):400–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  236. Sellheyer K. Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers. Br J Dermatol. 2011;164(4):696–711.

    PubMed  CAS  Google Scholar 

  237. Harris PJ, Takebe N, Ivy SP. Molecular conversations and the development of the hair follicle and basal cell carcinoma. Cancer Prev Res (Phila). 2010;3(10):1217–21.

    CAS  Google Scholar 

  238. Jackson R. The many faces of basal cell carcinoma. Can Med Assoc J. 1982;126(10):1157–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  239. Scrivener Y, Grosshans E, Cribier B. Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol. 2002;147(1):41–7.

    PubMed  CAS  Google Scholar 

  240. Ackerman AB. Trichoblastic carcinoma (basal cell carcinoma). In: Ackerman AB, Reddy VB, Soyer HP, editors. Neoplasms with follicular differentiation. Ackerman’s histologic diagnosis of neoplastic skin diseases. 1. 2nd ed. New York: Ardor Scribendi; 2001.

    Google Scholar 

  241. Looi LM. Localized amyloidosis in basal cell carcinoma. A pathologic study. Cancer. 1983;52(10):1833–6.

    PubMed  CAS  Google Scholar 

  242. McNutt NS. Ultrastructural comparison of the interface between epithelium and stroma in basal cell carcinoma and control human skin. Lab Investig. 1976;35(2):132–42.

    PubMed  CAS  Google Scholar 

  243. Merot Y, Faucher F, Didierjean L, Saurat JH. Loss of bullous pemphigoid antigen in peritumoral lacunas of basal cell carcinomas. Acta Derm Venereol. 1984;64(3):209–13.

    PubMed  CAS  Google Scholar 

  244. Lane AT, Goldsmith LA, McCoon PE, Muhlbauer JE. Decreased anchoring-fibril antigens (AF1 and AF2) in basal-cell carcinoma. Arch Dermatol Res. 1985;277(6):499–501.

    PubMed  CAS  Google Scholar 

  245. Maloney ME, Jones DB, Sexton FM. Pigmented basal cell carcinoma: investigation of 70 cases. J Am Acad Dermatol. 1992;27(1):74–8.

    PubMed  CAS  Google Scholar 

  246. Beer TW, Shepherd P, Theaker JM. Ber EP4 and epithelial membrane antigen aid distinction of basal cell, squamous cell and basosquamous carcinomas of the skin. Histopathology. 2000;37(3):218–23.

    PubMed  CAS  Google Scholar 

  247. Izikson L, Bhan A, Zembowicz A. Androgen receptor expression helps to differentiate basal cell carcinoma from benign trichoblastic tumors. Am J Dermatopathol. 2005;27(2):91–5.

    PubMed  Google Scholar 

  248. Astarci HM, Gurbuz GA, Sengul D, Hucumenoglu S, Kocer U, Ustun H. Significance of androgen receptor and CD10 expression in cutaneous basal cell carcinoma and trichoepithelioma. Oncol Lett. 2015;10(6):3466–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  249. Pyne JH, Myint E, Barr EM, Clark SP, David M, Na R, et al. Superficial basal cell carcinoma: a comparison of superficial only subtype with superficial combined with other subtypes by age, sex and anatomic site in 3150 cases. J Cutan Pathol. 2017;44(8):677–83.

    PubMed  Google Scholar 

  250. McKay KM, Sambrano BL, Fox PS, Bassett RL, Chon S, Prieto VG. Thickness of superficial basal cell carcinoma (sBCC) predicts imiquimod efficacy: a proposal for a thickness-based definition of sBCC. Br J Dermatol. 2013;169(3):549–54.

    PubMed  CAS  Google Scholar 

  251. Roozeboom MH, van Kleef L, Arits AH, Mosterd K, Winnepenninckx VJ, van Marion AM, et al. Tumor thickness and adnexal extension of superficial basal cell carcinoma (sBCC) as determinants of treatment failure for methylaminolevulinate (MAL)-photodynamic therapy (PDT), imiquimod, and 5-fluorouracil (FU). J Am Acad Dermatol. 2015;73(1):93–8.

    PubMed  CAS  Google Scholar 

  252. Sarma DP, Olson D, Olivella J, Harbert T, Wang B, Ortman S. Clear cell Basal cell carcinoma. Patholog Res Int. 2011;2011:386921.

    PubMed  PubMed Central  Google Scholar 

  253. Forman SB, Ferringer TC. Clear-cell basal cell carcinoma: differentiation from other clear-cell tumors. Am J Dermatopathol. 2007;29(2):208–9.

    PubMed  Google Scholar 

  254. Barr RJ, Alpern KS, Santa Cruz DJ, Fretzin DF. Clear cell basal cell carcinoma: an unusual degenerative variant. J Cutan Pathol. 1993;20(4):308–16.

    PubMed  CAS  Google Scholar 

  255. Tozawa T, Ackerman AB. Basal cell carcinoma with follicular differentiation. Am J Dermatopathol. 1987;9(6):474–82.

    PubMed  CAS  Google Scholar 

  256. Walsh N, Ackerman AB. Infundibulocystic basal cell carcinoma: a newly described variant. Mod Pathol. 1990;3(5):599–608.

    PubMed  CAS  Google Scholar 

  257. Crowson AN. Basal cell carcinoma: biology, morphology and clinical implications. Mod Pathol. 2006;19(Suppl 2):S127–47.

    PubMed  Google Scholar 

  258. Richman T, Penneys NS. Analysis of morpheaform basal cell carcinoma. J Cutan Pathol. 1988;15(6):359–62.

    PubMed  CAS  Google Scholar 

  259. East E, Fullen DR, Arps D, Patel RM, Palanisamy N, Carskadon S, et al. Morpheaform basal cell carcinomas with areas of predominantly single-cell pattern of infiltration: diagnostic utility of p63 and cytokeratin. Am J Dermatopathol. 2016;38(10):744–50.

    PubMed  Google Scholar 

  260. Pinkus H. Premalignant fibroepithelial tumors of skin. AMA Arch Derm Syphilol. 1953;67(6):598–615.

    PubMed  CAS  Google Scholar 

  261. Katona TM, Ravis SM, Perkins SM, Moores WB, Billings SD. Expression of androgen receptor by fibroepithelioma of Pinkus: evidence supporting classification as a basal cell carcinoma variant? Am J Dermatopathol. 2007;29(1):7–12.

    PubMed  Google Scholar 

  262. Jones CC, Ansari SJ, Tschen JA. Cystic fibroepithelioma of pinkus. J Cutan Pathol. 1991;18(3):220–2.

    PubMed  CAS  Google Scholar 

  263. Goldenberg G, Karagiannis T, Palmer JB, Lotya J, O’Neill C, Kisa R, et al. Incidence and prevalence of basal cell carcinoma (BCC) and locally advanced BCC (LABCC) in a large commercially insured population in the United States: a retrospective cohort study. J Am Acad Dermatol. 2016;75(5):957–66. e2.

    PubMed  Google Scholar 

  264. Ganti AK, Kessinger A. Systemic therapy for disseminated basal cell carcinoma: an uncommon manifestation of a common cancer. Cancer Treat Rev. 2011;37(6):440–3.

    PubMed  Google Scholar 

  265. Kinoshita R, Yamamoto O, Yasuda H, Tokura Y. Basal cell carcinoma of the scrotum with lymph node metastasis: report of a case and review of the literature. Int J Dermatol. 2005;44(1):54–6.

    PubMed  CAS  Google Scholar 

  266. Staley TE, Nieh PT, Ciesielski TE, Cieplinski W. Metastatic basal cell carcinoma of the scrotum. J Urol. 1983;130(4):792–4.

    PubMed  CAS  Google Scholar 

  267. Nahass GT, Blauvelt A, Leonardi CL, Penneys NS. Basal cell carcinoma of the scrotum. Report of three cases and review of the literature. J Am Acad Dermatol. 1992;26(4):574–8.

    PubMed  CAS  Google Scholar 

  268. Branson SV, McClintic E, Ozgur O, Esmaeli B, Yeatts RP. Orbitofacial metastatic basal cell carcinoma: report of 10 cases. Ophthal Plast Reconstr Surg. 2017;33(3):213–7.

    PubMed  Google Scholar 

  269. Uzquiano MC, Prieto VG, Nash JW, Ivan DS, Gong Y, Lazar AJ, et al. Metastatic basal cell carcinoma exhibits reduced actin expression. Mod Pathol. 2008;21(5):540–3.

    PubMed  CAS  Google Scholar 

  270. McCusker M, Basset-Seguin N, Dummer R, Lewis K, Schadendorf D, Sekulic A, et al. Metastatic basal cell carcinoma: prognosis dependent on anatomic site and spread of disease. Eur J Cancer. 2014;50(4):774–83.

    PubMed  Google Scholar 

  271. Mosterd K, Krekels GA, Nieman FH, Ostertag JU, Essers BA, Dirksen CD, et al. Surgical excision versus Mohs’ micrographic surgery for primary and recurrent basal-cell carcinoma of the face: a prospective randomised controlled trial with 5-years’ follow-up. Lancet Oncol. 2008;9(12):1149–56.

    PubMed  Google Scholar 

  272. van Loo E, Mosterd K, Krekels GA, Roozeboom MH, Ostertag JU, Dirksen CD, et al. Surgical excision versus Mohs’ micrographic surgery for basal cell carcinoma of the face: a randomised clinical trial with 10 year follow-up. Eur J Cancer. 2014;50(17):3011–20.

    PubMed  Google Scholar 

  273. Sin CW, Barua A, Cook A. Recurrence rates of periocular basal cell carcinoma following Mohs micrographic surgery: a retrospective study. Int J Dermatol. 2016;55(9):1044–7.

    PubMed  Google Scholar 

  274. Hoorens I, Batteauw A, Van Maele G, Lapiere K, Boone B, Ongenae K. Mohs micrographic surgery for basal cell carcinoma: evaluation of the indication criteria and predictive factors for extensive subclinical spread. Br J Dermatol. 2016;174(4):847–52.

    PubMed  CAS  Google Scholar 

  275. Gill HS, Moscato EE, Seiff SR. Eyelid margin basal cell carcinoma managed with full-thickness en-face frozen section histopathology. Ophthal Plast Reconstr Surg. 2014;30(1):15–9.

    PubMed  Google Scholar 

  276. Kvannli L, Benger R, Gal A, Swamy B. The method of en face frozen section in clearing periocular basal cell carcinoma and squamous cell carcinoma. Orbit. 2012;31(4):233–7.

    PubMed  Google Scholar 

  277. Giordano Resti A, Sacconi R, Baccelli N, Bandello F. Outcome of 110 basal cell carcinomas of the eyelid treated with frozen section-controlled excision: mean follow-up over 5 years. Eur J Ophthalmol. 2014;24(4):476–82.

    PubMed  Google Scholar 

  278. Axelson M, Liu K, Jiang X, He K, Wang J, Zhao H, et al. U.S. Food and Drug Administration approval: vismodegib for recurrent, locally advanced, or metastatic basal cell carcinoma. Clin Cancer Res. 2013;19(9):2289–93.

    PubMed  CAS  Google Scholar 

  279. Casey D, Demko S, Shord S, Zhao H, Chen H, He K, et al. FDA approval summary: sonidegib for locally advanced basal cell carcinoma. Clin Cancer Res. 2017;23(10):2377–81.

    PubMed  CAS  Google Scholar 

  280. Doan HQ, Silapunt S, Migden MR. Sonidegib, a novel smoothened inhibitor for the treatment of advanced basal cell carcinoma. Onco Targets Ther. 2016;9:5671–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  281. Sekulic A, Migden MR, Lewis K, Hainsworth JD, Solomon JA, Yoo S, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol. 2015;72(6):1021–6. e8

    PubMed  Google Scholar 

  282. Apalla Z, Papageorgiou C, Lallas A, Sotiriou E, Lazaridou E, Vakirlis E, et al. Spotlight on vismodegib in the treatment of basal cell carcinoma: an evidence-based review of its place in therapy. Clin Cosmet Investig Dermatol. 2017;10:171–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  283. Sekulic A, Migden MR, Basset-Seguin N, Garbe C, Gesierich A, Lao CD, et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study. BMC Cancer. 2017;17(1):332.

    PubMed  PubMed Central  Google Scholar 

  284. Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  285. Meani RE, Lim SW, Chang AL, Kelly JW. Emergence of chemoresistance in a metastatic basal cell carcinoma patient after complete response to hedgehog pathway inhibitor vismodegib (GDC-0449). Australas J Dermatol. 2014;55(3):218–21.

    PubMed  Google Scholar 

  286. Dessinioti C, Plaka M, Stratigos AJ. Vismodegib for the treatment of basal cell carcinoma: results and implications of the ERIVANCE BCC trial. Future Oncol. 2014;10(6):927–36.

    PubMed  CAS  Google Scholar 

  287. Edwards BJ, Raisch DW, Saraykar SS, Sun M, Hammel JA, Tran HT, et al. Hepatotoxicity with vismodegib: an MD Anderson Cancer Center and Research on adverse drug events and reports project. Drugs R D. 2017;17(1):211–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  288. Ash MM, Jolly PS. Cholestatic hepatic injury associated with vismodegib, aspirin, and naproxen use: a case study and review of vismodegib safety. Int J Dermatol. 2015;54(3):370–4.

    PubMed  CAS  Google Scholar 

  289. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.

    PubMed  PubMed Central  Google Scholar 

  290. Beissert S, Loser K. Molecular and cellular mechanisms of photocarcinogenesis. Photochem Photobiol. 2008;84(1):29–34.

    PubMed  CAS  Google Scholar 

  291. Berman B, Cockerell CJ. Pathobiology of actinic keratosis: ultraviolet-dependent keratinocyte proliferation. J Am Acad Dermatol. 2013;68(1 Suppl 1):S10–9.

    PubMed  Google Scholar 

  292. Jacobs LC, Liu F, Pardo LM, Hofman A, Uitterlinden AG, Kayser M, et al. IRF4, MC1R and TYR genes are risk factors for actinic keratosis independent of skin color. Hum Mol Genet. 2015;24(11):3296–303.

    PubMed  CAS  Google Scholar 

  293. Zhong K, Verkouteren JA, Jacobs LC, Uitterlinden AG, Hofman A, Liu F, et al. Pigmentation-independent susceptibility loci for actinic keratosis highlighted by compound heterozygosity analysis. J Invest Dermatol. 2017;137(1):77–84.

    PubMed  CAS  Google Scholar 

  294. Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E, et al. The burden of skin diseases: 2004 a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol. 2006;55(3):490–500.

    PubMed  Google Scholar 

  295. Harris RB, Griffith K, Moon TE. Trends in the incidence of nonmelanoma skin cancers in southeastern Arizona, 1985–1996. J Am Acad Dermatol. 2001;45(4):528–36.

    PubMed  CAS  Google Scholar 

  296. Marks R, Foley P, Goodman G, Hage BH, Selwood TS. Spontaneous remission of solar keratoses: the case for conservative management. Br J Dermatol. 1986;115(6):649–55.

    PubMed  CAS  Google Scholar 

  297. Marks R, Rennie G, Selwood TS. Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet. 1988;1(8589):795–7.

    PubMed  CAS  Google Scholar 

  298. Lebwohl M. Actinic keratosis: epidemiology and progression to squamous cell carcinoma. Br J Dermatol. 2003;149(Suppl 66):31–3.

    PubMed  Google Scholar 

  299. Glogau RG. The risk of progression to invasive disease. J Am Acad Dermatol. 2000;42(1 Pt 2):23–4.

    PubMed  CAS  Google Scholar 

  300. Fuchs A, Marmur E. The kinetics of skin cancer: progression of actinic keratosis to squamous cell carcinoma. Dermatol Surg. 2007;33(9):1099–101.

    PubMed  CAS  Google Scholar 

  301. Fernandez Figueras MT. From actinic keratosis to squamous cell carcinoma: pathophysiology revisited. J Eur Acad Dermatol Venereol. 2017;31(Suppl 2):5–7.

    PubMed  Google Scholar 

  302. Moon TE, Levine N, Cartmel B, Bangert JL, Rodney S, Dong Q, et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol Biomark Prev. 1997;6(11):949–56.

    CAS  Google Scholar 

  303. Rowert-Huber J, Patel MJ, Forschner T, Ulrich C, Eberle J, Kerl H, et al. Actinic keratosis is an early in situ squamous cell carcinoma: a proposal for reclassification. Br J Dermatol. 2007;156(Suppl 3):8–12.

    PubMed  Google Scholar 

  304. Cockerell CJ, Wharton JR. New histopathological classification of actinic keratosis (incipient intraepidermal squamous cell carcinoma). J Drugs Dermatol. 2005;4(4):462–7.

    PubMed  Google Scholar 

  305. Green AC. Epidemiology of actinic keratoses. Curr Probl Dermatol. 2015;46:1–7.

    PubMed  Google Scholar 

  306. Malvehy J. A new vision of actinic keratosis beyond visible clinical lesions. J Eur Acad Dermatol Venereol. 2015;29(Suppl 1):3–8.

    PubMed  Google Scholar 

  307. Olsen EA, Abernethy ML, Kulp-Shorten C, Callen JP, Glazer SD, Huntley A, et al. A double-blind, vehicle-controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J Am Acad Dermatol. 1991;24(5 Pt 1):738–43.

    PubMed  CAS  Google Scholar 

  308. Dreno B, Cerio R, Dirschka T, Nart IF, Lear JT, Peris K, et al. A novel actinic keratosis field assessment scale for grading actinic keratosis disease severity. Acta Derm Venereol. 2017;97(9):1108–13.

    PubMed  Google Scholar 

  309. Dirschka T, Pellacani G, Micali G, Malvehy J, Stratigos AJ, Casari A, et al. A proposed scoring system for assessing the severity of actinic keratosis on the head: actinic keratosis area and severity index. J Eur Acad Dermatol Venereol. 2017;31(8):1295–302.

    PubMed  CAS  Google Scholar 

  310. Massone C, Cerroni L. The many clinico-pathologic faces of actinic keratosis: an atlas. Curr Probl Dermatol. 2015;46:64–9.

    PubMed  Google Scholar 

  311. Yu RC, Pryce DW, Macfarlane AW, Stewart TW. A histopathological study of 643 cutaneous horns. Br J Dermatol. 1991;124(5):449–52.

    PubMed  CAS  Google Scholar 

  312. Chung HJ, McGuigan KL, Osley KL, Zendell K, Lee JB. Pigmented solar (actinic) keratosis: an underrecognized collision lesion. J Am Acad Dermatol. 2013;68(4):647–53.

    PubMed  Google Scholar 

  313. Dalton SR, Gardner TL, Libow LF, Elston DM. Contiguous lesions in lentigo maligna. J Am Acad Dermatol. 2005;52(5):859–62.

    PubMed  Google Scholar 

  314. Dodds A, Chia A, Shumack S. Actinic keratosis: rationale and management. Dermatol Ther (Heidelb). 2014;4(1):11–31.

    PubMed  PubMed Central  Google Scholar 

  315. Costa C, Scalvenzi M, Ayala F, Fabbrocini G, Monfrecola G. How to treat actinic keratosis? An update. J Dermatol Case Rep. 2015;9(2):29–35.

    PubMed  PubMed Central  Google Scholar 

  316. Krawtchenko N, Roewert-Huber J, Ulrich M, Mann I, Sterry W, Stockfleth E. A randomised study of topical 5% imiquimod vs. topical 5-fluorouracil vs. cryosurgery in immunocompetent patients with actinic keratoses: a comparison of clinical and histological outcomes including 1-year follow-up. Br J Dermatol. 2007;157(Suppl 2):34–40.

    PubMed  CAS  Google Scholar 

  317. Peris K, Fargnoli MC. Conventional treatment of actinic keratosis: an overview. Curr Probl Dermatol. 2015;46:108–14.

    PubMed  Google Scholar 

  318. Goldenberg G. Treatment considerations in actinic keratosis. J Eur Acad Dermatol Venereol. 2017;31(Suppl 2):12–6.

    PubMed  Google Scholar 

  319. Kostovic K, Gulin SJ, Mokos ZB, Ceovic R. Topical ingenol mebutate: a new treatment modality for multiple actinic keratoses and field cancerization. Anti Cancer Agents Med Chem. 2017;17(10):1304–11.

    CAS  Google Scholar 

  320. Javor S, Cozzani E, Parodi A. Topical treatment of actinic keratosis with 3.0% diclofenac in 2.5% hyaluronan gel: review of the literature about the cumulative evidence of its efficacy and safety. G Ital Dermatol Venereol. 2016;151(3):275–80.

    PubMed  Google Scholar 

  321. Morton CA, Wulf HC, Szeimies RM, Gilaberte Y, Basset-Seguin N, Sotiriou E, et al. Practical approach to the use of daylight photodynamic therapy with topical methyl aminolevulinate for actinic keratosis: a European consensus. J Eur Acad Dermatol Venereol. 2015;29(9):1718–23.

    PubMed  CAS  Google Scholar 

  322. Camp WL, Turnham JW, Athar M, Elmets CA. New agents for prevention of ultraviolet-induced nonmelanoma skin cancer. Semin Cutan Med Surg. 2011;30(1):6–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  323. Kossard S, Rosen R. Cutaneous Bowen’s disease. An analysis of 1001 cases according to age, sex, and site. J Am Acad Dermatol. 1992;27(3):406–10.

    PubMed  CAS  Google Scholar 

  324. Ragi G, Turner MS, Klein LE, Stoll HL Jr. Pigmented Bowen’s disease and review of 420 Bowen’s disease lesions. J Dermatol Surg Oncol. 1988;14(7):765–9.

    PubMed  CAS  Google Scholar 

  325. Shah SH, Parameswaran S, Hickey N, Zetler S, Nathan M. Multifocal intraepithelial neoplasia and the psychological consequence of vulvectomy. BMJ Case Rep. 2011;2011:bcr0220113827.

    Google Scholar 

  326. Sau P, McMarlin SL, Sperling LC, Katz R. Bowen’s disease of the nail bed and periungual area. A clinicopathologic analysis of seven cases. Arch Dermatol. 1994;130(2):204–9.

    PubMed  CAS  Google Scholar 

  327. Ongenae K, Van De Kerckhove M, Naeyaert JM. Bowen’s disease of the nail. Dermatology. 2002;204(4):348–50.

    PubMed  Google Scholar 

  328. Schmitz MW, Goldberg LJ, Adler AJ. An extensive case of Bowen’s disease in an HIV-positive male. AIDS Patient Care STDs. 2007;21(2):78–80.

    PubMed  Google Scholar 

  329. Hayashida MZ, Fernandes VM, Fernandes DR, Ogawa MM, Tomimori J. Epidemiology and clinical evolution of non-melanoma skin cancer in renal transplant recipients: a single-center experience in Sao Paulo. Brazil Int J Dermatol. 2015;54(10):e383–8.

    PubMed  CAS  Google Scholar 

  330. Pritchett EN, Doyle A, Shaver CM, Miller B, Abdelmalek M, Cusack CA, et al. Nonmelanoma skin cancer in nonwhite organ transplant recipients. JAMA Dermatol. 2016;152(12):1348–53.

    PubMed  Google Scholar 

  331. Drake AL, Walling HW. Variations in presentation of squamous cell carcinoma in situ (Bowen’s disease) in immunocompromised patients. J Am Acad Dermatol. 2008;59(1):68–71.

    PubMed  Google Scholar 

  332. Reuschenbach M, Tran T, Faulstich F, Hartschuh W, Vinokurova S, Kloor M, et al. High-risk human papillomavirus in non-melanoma skin lesions from renal allograft recipients and immunocompetent patients. Br J Cancer. 2011;104(8):1334–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  333. Masuda T, Hara H, Shimojima H, Suzuki H, Tanaka K. Spontaneous complete regression of multiple Bowen’s disease in the web-spaces of the feet. Int J Dermatol. 2006;45(6):783–5.

    PubMed  Google Scholar 

  334. Nihei N, Hiruma M, Ikeda S, Ogawa H. A case of Bowen’s disease showing a clinical tendency toward spontaneous regression. J Dermatol. 2004;31(7):569–72.

    PubMed  Google Scholar 

  335. Eimpunth S, Goldenberg A, Hamman MS, Oganesyan G, Lee RA, Hunnangkul S, et al. Squamous cell carcinoma in situ upstaged to invasive squamous cell carcinoma: a 5-year, single institution retrospective review. Dermatol Surg. 2017;43(5):698–703.

    PubMed  CAS  Google Scholar 

  336. Knackstedt TJ, Brennick JB, Perry AE, Li Z, Quatrano NA, Samie FH. Frequency of squamous cell carcinoma (SCC) invasion in transected SCC in situ referred for Mohs surgery: the Dartmouth-Hitchcock experience. Int J Dermatol. 2015;54(7):830–3.

    PubMed  Google Scholar 

  337. Stone MS, Noonan CA, Tschen J, Bruce S. Bowen’s disease of the feet. Presence of human papillomavirus 16 DNA in tumor tissue. Arch Dermatol. 1987;123(11):1517–20.

    PubMed  CAS  Google Scholar 

  338. Kettler AH, Rutledge M, Tschen JA, Buffone G. Detection of human papillomavirus in nongenital Bowen’s disease by in situ DNA hybridization. Arch Dermatol. 1990;126(6):777–81.

    PubMed  CAS  Google Scholar 

  339. Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014;70(4):621–9.

    PubMed  PubMed Central  Google Scholar 

  340. Farzan SF, Waterboer T, Gui J, Nelson HH, Li Z, Michael KM, et al. Cutaneous alpha, beta and gamma human papillomaviruses in relation to squamous cell carcinoma of the skin: a population-based study. Int J Cancer. 2013;133(7):1713–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  341. Beadle BM, William WN Jr, McLemore MS, Sturgis EM, Williams MD. p16 expression in cutaneous squamous carcinomas with neck metastases: a potential pitfall in identifying unknown primaries of the head and neck. Head Neck. 2013;35(11):1527–33.

    PubMed  Google Scholar 

  342. Satgunaseelan L, Chia N, Suh H, Virk S, Ashford B, Lum T, et al. p16 expression in cutaneous squamous cell carcinoma of the head and neck is not associated with integration of high risk HPV DNA or prognosis. Pathology. 2017;49(5):494–8.

    PubMed  CAS  Google Scholar 

  343. Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J Biomed Sci. 2006;13(5):657–66.

    PubMed  CAS  Google Scholar 

  344. Jackson R, Grainge JW. Arsenic and cancer. Can Med Assoc J. 1975;113(5):396–401.

    PubMed  PubMed Central  CAS  Google Scholar 

  345. Christensen SR, McNiff JM, Cool AJ, Aasi SZ, Hanlon AM, Leffell DJ. Histopathologic assessment of depth of follicular invasion of squamous cell carcinoma (SCC) in situ (SCCis): implications for treatment approach. J Am Acad Dermatol. 2016;74(2):356–62.

    PubMed  Google Scholar 

  346. Sah SP, Kelly PJ, McManus DT, McCluggage WG. Diffuse CK7, CAM5.2 and BerEP4 positivity in pagetoid squamous cell carcinoma in situ (pagetoid Bowen’s disease) of the perianal region: a mimic of extramammary Paget’s disease. Histopathology. 2013;62(3):511–4.

    PubMed  Google Scholar 

  347. Clarke LE, Conway AB, Warner NM, Barnwell PN, Sceppa J, Helm KF. Expression of CK7, Cam 5.2 and Ber-Ep4 in cutaneous squamous cell carcinoma. J Cutan Pathol. 2013;40(7):646–50.

    PubMed  Google Scholar 

  348. Chang J, Prieto VG, Sangueza M, Plaza JA. Diagnostic utility of p63 expression in the differential diagnosis of pagetoid squamous cell carcinoma in situ and extramammary Paget disease: a histopathologic study of 70 cases. Am J Dermatopathol. 2014;36(1):49–53.

    PubMed  CAS  Google Scholar 

  349. Taylor DR Jr, South DA. Bowenoid papulosis: a review. Cutis. 1981;27(1):92–8.

    PubMed  Google Scholar 

  350. Giam YC, Ong BH. Bowenoid papulosis: a recent entity in sexually transmitted diseases. Ann Acad Med Singap. 1986;15(1):15–9.

    PubMed  CAS  Google Scholar 

  351. Bocking A, Chatelain R, Salterberg A, Hagedorn M, Gross G. Bowenoid papulosis. Classification as a low-grade in situ carcinoma of the epidermis on the basis of histomorphologic and DNA ploidy studies. Anal Quant Cytol Histol. 1989;11(6):419–25.

    PubMed  CAS  Google Scholar 

  352. Yu DS, Kim G, Song HJ, Oh CH. Morphometric assessment of nuclei in Bowen’s disease and bowenoid papulosis. Skin Res Technol. 2004;10(1):67–70.

    PubMed  Google Scholar 

  353. Feng J, Wu F, Liu F, Deng D, Chen J, Zeng M, et al. Spontaneous regression of bowenoid papulosis. Dermatol Online J. 2013;19(5):18185.

    PubMed  Google Scholar 

  354. Kawakami A, Saga K, Ono I, Hida T, Jimbow K, Yamashita T. Spontaneous regression of bowenoid papulosis in a patient with acquired immunodeficiency syndrome after an increase in peripheral CD4+ T lymphocytes. Int J Dermatol. 2009;48(2):210–2.

    PubMed  Google Scholar 

  355. Nunes Mde G, Trope BM, Cavalcanti SM, Oliveira Ldo H, Ramos-e-Silva M. Bowenoid papulosis in a patient with AIDS treated with imiquimod: case report. Acta Dermatovenerol Croat. 2004;12(4):278–81.

    PubMed  Google Scholar 

  356. Wang XL, Wang HW, Guo MX, Huang Z. Combination of immunotherapy and photodynamic therapy in the treatment of Bowenoid papulosis. Photodiagn Photodyn Ther. 2007;4(2):88–93.

    Google Scholar 

  357. Matuszewski M, Michajlowski I, Michajlowski J, Sokolowska-Wojdylo M, Wlodarczyk A, Krajka K. Topical treatment of bowenoid papulosis of the penis with imiquimod. J Eur Acad Dermatol Venereol. 2009;23(8):978–9.

    PubMed  CAS  Google Scholar 

  358. Shimizu I, Cruz A, Chang KH, Dufresne RG. Treatment of squamous cell carcinoma in situ: a review. Dermatol Surg. 2011;37(10):1394–411.

    PubMed  CAS  Google Scholar 

  359. Bath-Hextall FJ, Matin RN, Wilkinson D, Leonardi-Bee J. Interventions for cutaneous Bowen’s disease. Cochrane Database Syst Rev. 2013(6):CD007281.

    Google Scholar 

  360. Cox NH, Eedy DJ, Morton CA, Therapy G. Audit Subcommittee BAoD. Guidelines for management of Bowen’s disease: 2006 update. Br J Dermatol. 2007;156(1):11–21.

    PubMed  CAS  Google Scholar 

  361. Morton CA, Birnie AJ, Eedy DJ. British Association of Dermatologists’ guidelines for the management of squamous cell carcinoma in situ (Bowen’s disease) 2014. Br J Dermatol. 2014;170(2):245–60.

    PubMed  CAS  Google Scholar 

  362. MacFarlane DF, El Tal AK. Cryoimmunotherapy: superficial basal cell cancer and squamous cell carcinoma in situ treated with liquid nitrogen followed by imiquimod. Arch Dermatol. 2011;147(11):1326–7.

    PubMed  Google Scholar 

  363. Ghadially FN. The role of the hair follicle in the origin and evolution of some cutaneous neoplasms of man and experimental animals. Cancer. 1961;14:801–16.

    PubMed  CAS  Google Scholar 

  364. Ghadially FN, Barton BW, Kerridge DF. The etiology of keratoacanthoma. Cancer. 1963;16:603–11.

    PubMed  CAS  Google Scholar 

  365. Misago N, Takai T, Toda S, Narisawa Y. The changes in the expression levels of follicular markers in keratoacanthoma depend on the stage: keratoacanthoma is a follicular neoplasm exhibiting infundibular/isthmic differentiation without expression of CK15. J Cutan Pathol. 2014;41(5):437–46.

    PubMed  Google Scholar 

  366. Savage JA, Maize JC Sr. Keratoacanthoma clinical behavior: a systematic review. Am J Dermatopathol. 2014;36(5):422–9.

    PubMed  Google Scholar 

  367. Choi JH, Shin DH, Shin DS, Cho KH. Subungual keratoacanthoma: ultrasound and magnetic resonance imaging findings. Skelet Radiol. 2007;36(8):769–72.

    Google Scholar 

  368. Canas GC, Robson KJ, Arpey CJ. Persistent keratoacanthoma: challenges in management. Dermatol Surg. 1998;24(12):1364–9.

    PubMed  CAS  Google Scholar 

  369. Calonje E, Jones EW. Intravascular spread of keratoacanthoma. An alarming but benign phenomenon. Am J Dermatopathol. 1992;14(5):414–7.

    PubMed  CAS  Google Scholar 

  370. Godbolt AM, Sullivan JJ, Weedon D. Keratoacanthoma with perineural invasion: a report of 40 cases. Australas J Dermatol. 2001;42(3):168–71.

    PubMed  CAS  Google Scholar 

  371. Piscioli F, Boi S, Zumiani G, Cristofolini M. A gigantic, metastasizing keratoacanthoma. Report of a case and discussion on classification. Am J Dermatopathol. 1984;6(2):123–9.

    PubMed  CAS  Google Scholar 

  372. John AM, Holahan H, Singh P, Kim HJ, Handler MZ, Lambert WC. Fine and benign, until it becomes malignant: the enigmatic keratoacanthoma. Skinmed. 2017;15(3):205–6.

    PubMed  Google Scholar 

  373. Mandrell JC, Santa CD. Keratoacanthoma: hyperplasia, benign neoplasm, or a type of squamous cell carcinoma? Semin Diagn Pathol. 2009;26(3):150–63.

    PubMed  Google Scholar 

  374. Takai T, Misago N, Murata Y. Natural course of keratoacanthoma and related lesions after partial biopsy: clinical analysis of 66 lesions. J Dermatol. 2015;42(4):353–62.

    PubMed  Google Scholar 

  375. Misago N. The distinction of keratoacanthoma from various types of squamous cell carcinoma with crateriform architecture. J Cutan Pathol. 2016;43(12):1234–7.

    PubMed  Google Scholar 

  376. Nobeyama Y, Nakagawa H. Aberrant DNA methylation in keratoacanthoma. PLoS One. 2016;11(10):e0165370.

    PubMed  PubMed Central  Google Scholar 

  377. Clausen OP, Aass HC, Beigi M, Purdie KJ, Proby CM, Brown VL, et al. Are keratoacanthomas variants of squamous cell carcinomas? A comparison of chromosomal aberrations by comparative genomic hybridization. J Invest Dermatol. 2006;126(10):2308–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  378. Krunic AL, Garrod DR, Madani S, Buchanan MD, Clark RE. Immunohistochemical staining for desmogleins 1 and 2 in keratinocytic neoplasms with squamous phenotype: actinic keratosis, keratoacanthoma and squamous cell carcinoma of the skin. Br J Cancer. 1998;77(8):1275–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  379. Watanabe IC, Magalhaes RF, de Moraes AM, Stelini RF, Cintra GF, Metze K, et al. Keratoacanthoma and keratoacanthoma-like squamous cell carcinoma: similar morphology but different pathogenesis. Medicine (Baltimore). 2015;94(23):e934.

    Google Scholar 

  380. Picoto Ade S, Martins O, Oliveira V. Keratoacanthoma in a black patient. J Dermatol Surg Oncol. 1984;10(6):428–30.

    PubMed  Google Scholar 

  381. Kifuku K, Yoshikawa H, Sonoda KH, Kawano Y, Miyazaki K, Ishibashi T. Conjunctival keratoacanthoma in an Asian. Arch Ophthalmol. 2003;121(1):118–9.

    PubMed  Google Scholar 

  382. Tkach JR, Thorne EG. Keratoacanthoma of the glans penis. Cutis. 1979;24(6):615–6.

    PubMed  CAS  Google Scholar 

  383. Rhatigan RM, Nuss RC. Keratoacanthoma of the vulva. Gynecol Oncol. 1985;21(1):118–23.

    PubMed  CAS  Google Scholar 

  384. Jensen SL, Sjolin KE. Keratoacanthoma of the anus. Report of three cases. Dis Colon Rectum. 1985;28(10):743–5.

    PubMed  CAS  Google Scholar 

  385. Habel G, O’Regan B, Eissing A, Khoury F, Donath K. Intra-oral keratoacanthoma: an eruptive variant and review of the literature. Br Dent J. 1991;170(9):336–9.

    PubMed  CAS  Google Scholar 

  386. Borkhatariya PB, Gupta S, Bang D, Rawal RC. Keratoacanthoma centrifugum marginatum: case report and review of literature. Indian J Dermatol. 2011;56(4):455–6.

    PubMed  PubMed Central  Google Scholar 

  387. Bogner PN, Cheney RT, Zeitouni NC. Giant keratoacanthoma: case report and review of the English literature. Am J Dermatopathol. 2014;36(3):252–7.

    PubMed  Google Scholar 

  388. Kwiek B, Schwartz RA. Keratoacanthoma (KA): an update and review. J Am Acad Dermatol. 2016;74(6):1220–33.

    PubMed  Google Scholar 

  389. Curry JL, Torres-Cabala CA, Kim KB, Tetzlaff MT, Duvic M, Tsai KY, et al. Dermatologic toxicities to targeted cancer therapy: shared clinical and histologic adverse skin reactions. Int J Dermatol. 2014;53(3):376–84.

    PubMed  CAS  Google Scholar 

  390. Kong HH, Cowen EW, Azad NS, Dahut W, Gutierrez M, Turner ML. Keratoacanthomas associated with sorafenib therapy. J Am Acad Dermatol. 2007;56(1):171–2.

    PubMed  PubMed Central  Google Scholar 

  391. Chu EY, Wanat KA, Miller CJ, Amaravadi RK, Fecher LA, Brose MS, et al. Diverse cutaneous side effects associated with BRAF inhibitor therapy: a clinicopathologic study. J Am Acad Dermatol. 2012;67(6):1265–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  392. Frances L, Guijarro J, Marin I, Leiva-Salinas Mdel C, Bouret AM. Multiple eruptive keratoacanthomas associated with leflunomide. Dermatol Online J. 2013;19(7):18968.

    PubMed  Google Scholar 

  393. Ramirez M, Groff S, Kowalewski C. Eruptive keratoacanthomas after photodynamic therapy. Dermatol Surg. 2015;41(12):1426–9.

    PubMed  CAS  Google Scholar 

  394. Mohr B 3rd, Fernandez MP, Krejci-Manwaring J. Eruptive keratoacanthomas after Jessners and trichloroacetic acid peel for actinic keratosis. Dermatol Surg. 2013;39(2):331–3.

    PubMed  CAS  Google Scholar 

  395. Junqueira AL, Wanat KA, Farah RS. Squamous neoplasms arising within tattoos: clinical presentation, histopathology and management. Clin Exp Dermatol. 2017;42(6):601–6.

    PubMed  CAS  Google Scholar 

  396. Bart RS, Lagin S. Keratoacanthoma following pneumococcal vaccination: a case report. J Dermatol Surg Oncol. 1983;9(5):381–2.

    PubMed  CAS  Google Scholar 

  397. Hendricks WM. Sudden appearance of multiple keratoacanthomas three weeks after thermal burns. Cutis. 1991;47(6):410–2.

    PubMed  CAS  Google Scholar 

  398. Forslund O, DeAngelis PM, Beigi M, Schjolberg AR, Clausen OP. Identification of human papillomavirus in keratoacanthomas. J Cutan Pathol. 2003;30(7):423–9.

    PubMed  Google Scholar 

  399. Misago N, Takai T, Toda S, Narisawa Y. The histopathologic changes in keratoacanthoma depend on its stage. J Cutan Pathol. 2014;41(7):617–9.

    PubMed  Google Scholar 

  400. Tran DC, Li S, Henry AS, Wood DJ, Chang AL. An 18-year retrospective study on the outcomes of keratoacanthomas with different treatment modalities at a single academic center. Br J Dermatol. 2017;177(6):1749–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  401. Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U.S., 2002–2006 and 2007–2011. Am J Prev Med. 2015;48(2):183–7.

    PubMed  Google Scholar 

  402. Karia PS, Han J, Schmults CD. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol. 2013;68(6):957–66.

    PubMed  Google Scholar 

  403. Schmults CD, Karia PS, Carter JB, Han J, Qureshi AA. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: a 10-year, single-institution cohort study. JAMA Dermatol. 2013;149(5):541–7.

    PubMed  Google Scholar 

  404. Weinberg AS, Ogle CA, Shim EK. Metastatic cutaneous squamous cell carcinoma: an update. Dermatol Surg. 2007;33(8):885–99.

    PubMed  CAS  Google Scholar 

  405. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.

    PubMed  CAS  Google Scholar 

  406. Housman TS, Feldman SR, Williford PM, Fleischer AB Jr, Goldman ND, Acostamadiedo JM, et al. Skin cancer is among the most costly of all cancers to treat for the Medicare population. J Am Acad Dermatol. 2003;48(3):425–9.

    PubMed  Google Scholar 

  407. Colegio OR, Billingsley EM. Skin cancer in transplant recipients, out of the woods. Scientific retreat of the ITSCC and SCOPE. Am J Transplant. 2011;11(8):1584–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  408. Levine DE, Karia PS, Schmults CD. Outcomes of patients with multiple cutaneous squamous cell carcinomas: a 10-year single-institution cohort study. JAMA Dermatol. 2015;151(11):1220–5.

    PubMed  Google Scholar 

  409. Rangwala S, Tsai KY. Roles of the immune system in skin cancer. Br J Dermatol. 2011;165(5):953–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  410. Belbasis L, Stefanaki I, Stratigos AJ, Evangelou E. Non-genetic risk factors for cutaneous melanoma and keratinocyte skin cancers: an umbrella review of meta-analyses. J Dermatol Sci. 2016;84(3):330–9.

    PubMed  Google Scholar 

  411. Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010;49(9):978–86.

    PubMed  Google Scholar 

  412. Centers for Disease C, Prevention. Sunburn and sun protective behaviors among adults aged 18–29 years – United States, 2000–2010. MMWR Morb Mortal Wkly Rep. 2012;61(18):317–22.

    Google Scholar 

  413. Rigel DS. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol. 2008;58(5 Suppl 2):S129–32.

    PubMed  Google Scholar 

  414. Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol. 2012;88(5):1048–65.

    PubMed  CAS  Google Scholar 

  415. Nagarajan P, Tober KL, Riggenbach JA, Kusewitt DF, Lehman AM, Sielecki T, et al. MIF antagonist (CPSI-1306) protects against UVB-induced squamous cell carcinoma. Mol Cancer Res. 2014;12(9):1292–302.

    PubMed  PubMed Central  CAS  Google Scholar 

  416. Donaldson MR, Coldiron BM. No end in sight: the skin cancer epidemic continues. Semin Cutan Med Surg. 2011;30(1):3–5.

    PubMed  CAS  Google Scholar 

  417. Imafuku K, Hata H, Yanagi T, Kitamura S, Inamura-Takashima Y, Nishimura M, et al. Multiple skin cancers in patients with mycosis fungoides after long-term ultraviolet phototherapy. Clin Exp Dermatol. 2017;42(5):523–6.

    PubMed  CAS  Google Scholar 

  418. Gallagher RP, Lee TK, Bajdik CD, Borugian M. Ultraviolet radiation. Chronic Dis Can. 2010;29(Suppl 1):51–68.

    PubMed  Google Scholar 

  419. El Ghissassi F, Baan R, Straif K, Grosse Y, Secretan B, Bouvard V, et al. A review of human carcinogens – part D: radiation. Lancet Oncol. 2009;10(8):751–2.

    PubMed  Google Scholar 

  420. Walsh SB, Xu J, Xu H, Kurundkar AR, Maheshwari A, Grizzle WE, et al. Cyclosporine a mediates pathogenesis of aggressive cutaneous squamous cell carcinoma by augmenting epithelial-mesenchymal transition: role of TGFbeta signaling pathway. Mol Carcinog. 2011;50(7):516–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  421. Williams K, Mansh M, Chin-Hong P, Singer J, Arron ST. Voriconazole-associated cutaneous malignancy: a literature review on photocarcinogenesis in organ transplant recipients. Clin Infect Dis. 2014;58(7):997–1002.

    Google Scholar 

  422. Coghill AE, Johnson LG, Berg D, Resler AJ, Leca N, Madeleine MM. Immunosuppressive medications and squamous cell skin carcinoma: nested case-control study within the skin cancer after organ transplant (SCOT) cohort. Am J Transplant. 2016;16(2):565–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  423. Ingvar A, Smedby KE, Lindelof B, Fernberg P, Bellocco R, Tufveson G, et al. Immunosuppressive treatment after solid organ transplantation and risk of post-transplant cutaneous squamous cell carcinoma. Nephrol Dial Transplant. 2010;25(8):2764–71.

    PubMed  CAS  Google Scholar 

  424. Epaulard O, Villier C, Ravaud P, Chosidow O, Blanche S, Mamzer-Bruneel MF, et al. A multistep voriconazole-related phototoxic pathway may lead to skin carcinoma: results from a French nationwide study. Clin Infect Dis. 2013;57(12):e182–8.

    PubMed  CAS  Google Scholar 

  425. Ona K, Oh DH. Voriconazole N-oxide and its ultraviolet B photoproduct sensitize keratinocytes to ultraviolet A. Br J Dermatol. 2015;173(3):751–9.

    PubMed  CAS  Google Scholar 

  426. Cabrera HN, Gomez ML. Skin cancer induced by arsenic in the water. J Cutan Med Surg. 2003;7(2):106–11.

    PubMed  Google Scholar 

  427. Karlehagen S, Andersen A, Ohlson CG. Cancer incidence among creosote-exposed workers. Scand J Work Environ Health. 1992;18(1):26–9.

    PubMed  CAS  Google Scholar 

  428. Jaju PD, Ransohoff KJ, Tang JY, Sarin KY. Familial skin cancer syndromes: increased risk of nonmelanotic skin cancers and extracutaneous tumors. J Am Acad Dermatol. 2016;74(3):437–51.

    PubMed  Google Scholar 

  429. Guerra L, Odorisio T, Zambruno G, Castiglia D. Stromal microenvironment in type VII collagen-deficient skin: the ground for squamous cell carcinoma development. Matrix Biol. 2017;63:1–10.

    PubMed  CAS  Google Scholar 

  430. Montaudie H, Chiaverini C, Sbidian E, Charlesworth A, Lacour JP. Inherited epidermolysis bullosa and squamous cell carcinoma: a systematic review of 117 cases. Orphanet J Rare Dis. 2016;11(1):117.

    PubMed  PubMed Central  CAS  Google Scholar 

  431. Burger B, Itin PH. Epidermodysplasia verruciformis. Curr Probl Dermatol. 2014;45:123–31.

    PubMed  CAS  Google Scholar 

  432. Hampras SS, Rollison DE, Tommasino M, Gheit T, Schabath MB, Messina JL, et al. Genetic variations in the epidermodysplasia verruciformis (EVER/TMC) genes, cutaneous human papillomavirus infection and squamous cell carcinoma of the skin. Br J Dermatol. 2015;173(6):1532–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  433. Rawson RV, Watson GF, Maher AM, McCarthy SW, Thompson JF, Scolyer RA. Germline BAP1 mutations also predispose to cutaneous squamous cell carcinoma. Pathology. 2017;49(5):539–42.

    PubMed  CAS  Google Scholar 

  434. Koh SH, Oh SJ, Chun H, Kim SG. Pseudoangiosarcomatous squamous cell carcinoma developing on a burn scar: a case report and review of the literature. Burns. 2014;40(7):e47–52.

    PubMed  Google Scholar 

  435. Zuo KJ, Tredget EE. Multiple Marjolin’s ulcers arising from irradiated post-burn hypertrophic scars: a case report. Burns. 2014;40(4):e21–5.

    PubMed  Google Scholar 

  436. Moura DL, Ferreira R, Garruco A. Malignant transformation in chronic osteomyelitis. Rev Bras Ortop. 2017;52(2):141–7.

    PubMed  PubMed Central  Google Scholar 

  437. Chatterjee ND, Kundu S, Ballav A, Bhattacharjee A, Ray D, Mudi A. Squamous cell carcinoma arising on the sinus of chronic osteomyelitis of tibia. J Indian Med Assoc. 1997;95(2):57–8.

    PubMed  CAS  Google Scholar 

  438. Lavogiez C, Delaporte E, Darras-Vercambre S, Martin De Lassalle E, Castillo C, Mirabel X, et al. Clinicopathological study of 13 cases of squamous cell carcinoma complicating hidradenitis suppurativa. Dermatology. 2010;220(2):147–53.

    PubMed  CAS  Google Scholar 

  439. Katz RD, Goldberg NH. Marjolin ulcer arising within hidradenitis: a case report and literature review. Ann Plast Surg. 2009;62(2):173–4.

    PubMed  CAS  Google Scholar 

  440. Esposito F, Lauro M, Tirone LP, Festa RM, Peluso G, Mazzoni G, et al. Squamous cell carcinoma and pilonidal cyst disease. Ann Ital Chir. 2015;86 (ePub).

    Google Scholar 

  441. Eryilmaz R, Bilecik T, Okan I, Ozkan OV, Coskun A, Sahin M. Recurrent squamous cell carcinoma arising in a neglected pilonidal sinus: report of a case and literature review. Int J Clin Exp Med. 2014;7(2):446–50.

    PubMed  PubMed Central  Google Scholar 

  442. Trent JT, Kirsner RS. Wounds and malignancy. Adv Skin Wound Care. 2003;16(1):31–4.

    PubMed  Google Scholar 

  443. Flower C, Gaskin D, Bhamjee S, Bynoe Z. High-risk variants of cutaneous squamous cell carcinoma in patients with discoid lupus erythematosus: a case series. Lupus. 2013;22(7):736–9.

    PubMed  CAS  Google Scholar 

  444. Harper JG, Pilcher MF, Szlam S, Lind DS. Squamous cell carcinoma in an African American with discoid lupus erythematosus: a case report and review of the literature. South Med J. 2010;103(3):256–9.

    PubMed  Google Scholar 

  445. Motswaledi MH, Khammissa RA, Wood NH, Meyerov R, Lemmer J, Feller L. Discoid lupus erythematosus as it relates to cutaneous squamous cell carcinoma and to photosensitivity. SADJ. 2011;66(7):340–3.

    PubMed  CAS  Google Scholar 

  446. Sato Y, Fujimura T, Kambayashi Y, Tsukada A, Hidaka T, Tanita K, et al. Recurrent multiple squamous cell carcinomas on the scalp in a patient with juvenile dermatomyositis. Case Rep Oncol. 2017;10(1):106–11.

    PubMed  PubMed Central  Google Scholar 

  447. Thomsen SF, Sorensen LT. Smoking and skin disease. Skin Therapy Lett. 2010;15(6):4–7.

    PubMed  CAS  Google Scholar 

  448. De Hertog SA, Wensveen CA, Bastiaens MT, Kielich CJ, Berkhout MJ, Westendorp RG, et al. Relation between smoking and skin cancer. J Clin Oncol. 2001;19(1):231–8.

    PubMed  Google Scholar 

  449. Yu SH, Bordeaux JS, Baron ED. The immune system and skin cancer. Adv Exp Med Biol. 2014;810:182–91.

    PubMed  Google Scholar 

  450. Strickland FM, Kripke ML. Immune response associated with nonmelanoma skin cancer. Clin Plast Surg. 1997;24(4):637–47.

    PubMed  CAS  Google Scholar 

  451. Tsimberidou AM, Wen S, McLaughlin P, O’Brien S, Wierda WG, Lerner S, et al. Other malignancies in chronic lymphocytic leukemia/small lymphocytic lymphoma. J Clin Oncol. 2009;27(6):904–10.

    PubMed  Google Scholar 

  452. Brewer JD, Shanafelt TD, Khezri F, Sosa Seda IM, Zubair AS, Baum CL, et al. Increased incidence and recurrence rates of nonmelanoma skin cancer in patients with non-Hodgkin lymphoma: a Rochester Epidemiology Project population-based study in Minnesota. J Am Acad Dermatol. 2015;72(2):302–9.

    PubMed  Google Scholar 

  453. Tchernev G, Ananiev J, Semkova K, Dourmishev LA, Schonlebe J, Wollina U. Nevus comedonicus: an updated review. Dermatol Ther (Heidelb). 2013;3(1):33–40.

    PubMed  PubMed Central  Google Scholar 

  454. Quint KD, Genders RE, de Koning MN, Borgogna C, Gariglio M, Bouwes Bavinck JN, et al. Human Beta-papillomavirus infection and keratinocyte carcinomas. J Pathol. 2015;235(2):342–54.

    PubMed  CAS  Google Scholar 

  455. Reusser NM, Downing C, Guidry J, Tyring SK. HPV carcinomas in immunocompromised patients. J Clin Med. 2015;4(2):260–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  456. Chahoud J, Semaan A, Chen Y, Cao M, Rieber AG, Rady P, et al. Association between beta-genus human papillomavirus and cutaneous squamous cell carcinoma in immunocompetent individuals-A meta-analysis. JAMA Dermatol. 2016;152(12):1354–64.

    PubMed  Google Scholar 

  457. Kaspar TA, Wagner RF Jr, Jablonska S, Niimura M, Tyring SK. Prognosis and treatment of advanced squamous cell carcinoma secondary to epidermodysplasia verruciformis: a worldwide analysis of 11 patients. J Dermatol Surg Oncol. 1991;17(3):237–40.

    PubMed  CAS  Google Scholar 

  458. Dang C, Koehler A, Forschner T, Sehr P, Michael K, Pawlita M, et al. E6/E7 expression of human papillomavirus types in cutaneous squamous cell dysplasia and carcinoma in immunosuppressed organ transplant recipients. Br J Dermatol. 2006;155(1):129–36.

    PubMed  CAS  Google Scholar 

  459. Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol. 2011;131(8):1745–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  460. Meyers JM, Uberoi A, Grace M, Lambert PF, Munger K. Cutaneous HPV8 and MmuPV1 E6 proteins target the NOTCH and TGF-beta tumor suppressors to inhibit differentiation and sustain keratinocyte proliferation. PLoS Pathog. 2017;13(1):e1006171.

    PubMed  PubMed Central  Google Scholar 

  461. Muschik D, Braspenning-Wesch I, Stockfleth E, Rosl F, Hofmann TG, Nindl I. Cutaneous HPV23 E6 prevents p53 phosphorylation through interaction with HIPK2. PLoS One. 2011;6(11):e27655.

    PubMed  PubMed Central  CAS  Google Scholar 

  462. Skelton HG, Flax S, Chang L, Smith KJ. Squamous cell carcinomas arising from adnexal ductal cysts. Arch Pathol Lab Med. 2002;126(1):76–8.

    PubMed  Google Scholar 

  463. Muzic JG, Schmitt AR, Wright AC, Alniemi DT, Zubair AS, Olazagasti Lourido JM, et al. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: a population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc. 2017;92(6):890–8.

    PubMed  Google Scholar 

  464. Dzubow LM, Rigel DS, Robins P. Risk factors for local recurrence of primary cutaneous squamous cell carcinomas. Treatment by microscopically controlled excision. Arch Dermatol. 1982;118(11):900–2.

    PubMed  CAS  Google Scholar 

  465. Oberyszyn TM. Non-melanoma skin cancer: importance of gender, immunosuppressive status and vitamin D. Cancer Lett. 2008;261(2):127–36.

    PubMed  CAS  Google Scholar 

  466. Dinehart SM, Pollack SV. Metastases from squamous cell carcinoma of the skin and lip. An analysis of twenty-seven cases. J Am Acad Dermatol. 1989;21(2 Pt 1):241–8.

    PubMed  CAS  Google Scholar 

  467. Kraus DH, Carew JF, Harrison LB. Regional lymph node metastasis from cutaneous squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1998;124(5):582–7.

    PubMed  CAS  Google Scholar 

  468. Moore BA, Weber RS, Prieto V, El-Naggar A, Holsinger FC, Zhou X, et al. Lymph node metastases from cutaneous squamous cell carcinoma of the head and neck. Laryngoscope. 2005;115(9):1561–7.

    PubMed  Google Scholar 

  469. Thompson AK, Kelley BF, Prokop LJ, Murad MH, Baum CL. Risk factors for cutaneous squamous cell carcinoma recurrence, metastasis, and disease-specific death: a systematic review and meta-analysis. JAMA Dermatol. 2016;152(4):419–28.

    PubMed  PubMed Central  Google Scholar 

  470. Diaz-Cascajo C, Borghi S, Weyers W, Bastida-Inarrea J. Follicular squamous cell carcinoma of the skin: a poorly recognized neoplasm arising from the wall of hair follicles. J Cutan Pathol. 2004;31(1):19–25.

    PubMed  Google Scholar 

  471. Cassarino DS, Derienzo DP, Barr RJ. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification – part two. J Cutan Pathol. 2006;33(4):261–79.

    PubMed  Google Scholar 

  472. Anneroth G, Batsakis J, Luna M. Review of the literature and a recommended system of malignancy grading in oral squamous cell carcinomas. Scand J Dent Res. 1987;95(3):229–49.

    PubMed  CAS  Google Scholar 

  473. Farasat S, Yu SS, Neel VA, Nehal KS, Lardaro T, Mihm MC, et al. A new American Joint Committee on Cancer staging system for cutaneous squamous cell carcinoma: creation and rationale for inclusion of tumor (T) characteristics. J Am Acad Dermatol. 2011;64(6):1051–9.

    PubMed  PubMed Central  Google Scholar 

  474. Ogawa T, Kiuru M, Konia TH, Fung MA. Acantholytic squamous cell carcinoma is usually associated with hair follicles, not acantholytic actinic keratosis, and is not “high risk”: diagnosis, management, and clinical outcomes in a series of 115 cases. J Am Acad Dermatol. 2017;76(2):327–33.

    PubMed  Google Scholar 

  475. Pyne JH, Myint E, Barr EM, Clark SP, David M, Na R. Acantholytic invasive squamous cell carcinoma: tumor diameter, invasion depth, grade of differentiation, surgical margins, perineural invasion, recurrence and death rate. J Cutan Pathol. 2017;44(4):320–7.

    PubMed  CAS  Google Scholar 

  476. Ferlicot S, Plantier F, Rethers L, Bui AD, Wechsler J. Lymphoepithelioma-like carcinoma of the skin: a report of 3 Epstein-Barr virus (EBV)-negative additional cases. Immunohistochemical study of the stroma reaction. J Cutan Pathol. 2000;27(6):306–11.

    PubMed  CAS  Google Scholar 

  477. Wick MR, Swanson PE, LeBoit PE, Strickler JG, Cooper PH. Lymphoepithelioma-like carcinoma of the skin with adnexal differentiation. J Cutan Pathol. 1991;18(2):93–102.

    PubMed  CAS  Google Scholar 

  478. Swanson SA, Cooper PH, Mills SE, Wick MR. Lymphoepithelioma-like carcinoma of the skin. Mod Pathol. 1988;1(5):359–65.

    PubMed  CAS  Google Scholar 

  479. Ackerman LV. Verrucous carcinoma of the oral cavity. Surgery. 1948;23(4):670–8.

    PubMed  CAS  Google Scholar 

  480. Gualco M, Bonin S, Foglia G, Fulcheri E, Odicino F, Prefumo F, et al. Morphologic and biologic studies on ten cases of verrucous carcinoma of the vulva supporting the theory of a discrete clinico-pathologic entity. Int J Gynecol Cancer. 2003;13(3):317–24.

    PubMed  CAS  Google Scholar 

  481. Kuo T. Clear cell carcinoma of the skin. A variant of the squamous cell carcinoma that simulates sebaceous carcinoma. Am J Surg Pathol. 1980;4(6):573–83.

    PubMed  CAS  Google Scholar 

  482. Lawal AO, Adisa AO, Olajide MA, Olusanya AA. Clear cell variant of squamous cell carcinoma of skin: a report of a case. J Oral Maxillofac Pathol. 2013;17(1):110–2.

    PubMed  PubMed Central  Google Scholar 

  483. Wang NR, Wang MM, Zhou L, Liu ZL, Chen NP, Hu JP, et al. Cutaneous clear cell/signet-ring cell squamous cell carcinoma arising in the right thigh of a patient with type 2 diabetes: combined morphologic, immunohistochemical, and etiologic analysis. Diagn Pathol. 2016;11:36.

    PubMed  PubMed Central  Google Scholar 

  484. Nuno-Gonzalez A, Vicente-Martin FJ, Pinedo-Moraleda F, Lopez-Estebaranz JL. High-risk cutaneous squamous cell carcinoma. Actas Dermosifiliogr. 2012;103(7):567–78.

    PubMed  CAS  Google Scholar 

  485. Clayman GL, Lee JJ, Holsinger FC, Zhou X, Duvic M, El-Naggar AK, et al. Mortality risk from squamous cell skin cancer. J Clin Oncol. 2005;23(4):759–65.

    PubMed  Google Scholar 

  486. Brantsch KD, Meisner C, Schonfisch B, Trilling B, Wehner-Caroli J, Rocken M, et al. Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol. 2008;9(8):713–20.

    PubMed  Google Scholar 

  487. Breuninger H, Black B, Rassner G. Microstaging of squamous cell carcinomas. Am J Clin Pathol. 1990;94(5):624–7.

    PubMed  CAS  Google Scholar 

  488. Evans HL, Smith JL. Spindle cell squamous carcinomas and sarcoma-like tumors of the skin: a comparative study of 38 cases. Cancer. 1980;45(10):2687–97.

    PubMed  CAS  Google Scholar 

  489. Nappi O, Pettinato G, Wick MR. Adenoid (acantholytic) squamous cell carcinoma of the skin. J Cutan Pathol. 1989;16(3):114–21.

    PubMed  CAS  Google Scholar 

  490. Garcia C, Crowson AN. Acantholytic squamous cell carcinoma: is it really a more-aggressive tumor? Dermatol Surg. 2011;37(3):353–6.

    PubMed  CAS  Google Scholar 

  491. Carter JB, Johnson MM, Chua TL, Karia PS, Schmults CD. Outcomes of primary cutaneous squamous cell carcinoma with perineural invasion: an 11-year cohort study. JAMA Dermatol. 2013;149(1):35–41.

    PubMed  Google Scholar 

  492. Karia PS, Morgan FC, Ruiz ES, Schmults CD. Clinical and incidental perineural invasion of cutaneous squamous cell carcinoma: a systematic review and pooled analysis of outcomes data. JAMA Dermatol. 2017;153(8):781–8.

    PubMed  PubMed Central  Google Scholar 

  493. Goepfert H, Dichtel WJ, Medina JE, Lindberg RD, Luna MD. Perineural invasion in squamous cell skin carcinoma of the head and neck. Am J Surg. 1984;148(4):542–7.

    PubMed  CAS  Google Scholar 

  494. Ross AS, Whalen FM, Elenitsas R, Xu X, Troxel AB, Schmults CD. Diameter of involved nerves predicts outcomes in cutaneous squamous cell carcinoma with perineural invasion: an investigator-blinded retrospective cohort study. Dermatol Surg. 2009;35(12):1859–66.

    PubMed  CAS  Google Scholar 

  495. Warren TA, Broit N, Simmons JL, Pierce CJ, Chawla S, Lambie DL, et al. Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process. Sci Rep. 2016;6:34081.

    PubMed  PubMed Central  CAS  Google Scholar 

  496. Stratigos A, Garbe C, Lebbe C, Malvehy J, del Marmol V, Pehamberger H, et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline. Eur J Cancer. 2015;51(14):1989–2007.

    PubMed  Google Scholar 

  497. Ahadiat O, Higgins S, Sutton A, Ly A, Wysong A. SLNB in cutaneous SCC: a review of the current state of literature and the direction for the future. J Surg Oncol. 2017;116(3):344–50.

    PubMed  Google Scholar 

  498. Padilla RS, Sebastian S, Jiang Z, Nindl I, Larson R. Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma: a spectrum of disease progression. Arch Dermatol. 2010;146(3):288–93.

    PubMed  CAS  Google Scholar 

  499. South AP, Purdie KJ, Watt SA, Haldenby S, den Breems NY, Dimon M, et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol. 2014;134(10):2630–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  500. Harwood CA, Proby CM, Inman GJ, Leigh IM. The promise of genomics and the development of targeted therapies for cutaneous squamous cell carcinoma. Acta Derm Venereol. 2016;96(1):3–16.

    PubMed  Google Scholar 

  501. Al-Rohil RN, Tarasen AJ, Carlson JA, Wang K, Johnson A, Yelensky R, et al. Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer. 2016;122(2):249–57.

    PubMed  CAS  Google Scholar 

  502. Li YY, Hanna GJ, Laga AC, Haddad RI, Lorch JH, Hammerman PS. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res. 2015;21(6):1447–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  503. Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 2014;20(24):6582–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  504. Nagarajan P, Ivan DS. Cutaneous squamous cell carcinomas: focus on high-risk features and molecular alterations. Global Dermatology. 2016;3 (Special Issue: Updates in Dermatolopathology).

    Google Scholar 

  505. Ashford BG, Clark J, Gupta R, Iyer NG, Yu B, Ranson M. Reviewing the genetic alterations in high-risk cutaneous squamous cell carcinoma: a search for prognostic markers and therapeutic targets. Head Neck. 2017;39(7):1462–9.

    PubMed  Google Scholar 

  506. Schwaederle M, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Squamousness: next-generation sequencing reveals shared molecular features across squamous tumor types. Cell Cycle. 2015;14(14):2355–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  507. Durinck S, Ho C, Wang NJ, Liao W, Jakkula LR, Collisson EA, et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov. 2011;1(2):137–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  508. Eshkoor SA, Ismail P, Rahman SA, Mirinargesi M, Oshkour SA. Increased protein expression of p16 and cyclin D1 in squamous cell carcinoma tissues. Biosci Trends. 2009;3(3):105–9.

    PubMed  CAS  Google Scholar 

  509. Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108(43):17761–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  510. Panelos J, Tarantini F, Paglierani M, Di Serio C, Maio V, Pellerito S, et al. Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. Mod Pathol. 2008;21(3):316–25.

    PubMed  CAS  Google Scholar 

  511. Connolly K, Manders P, Earls P, Epstein RJ. Papillomavirus-associated squamous skin cancers following transplant immunosuppression: one Notch closer to control. Cancer Treat Rev. 2014;40(2):205–14.

    PubMed  Google Scholar 

  512. Toll A, Salgado R, Yebenes M, Martin-Ezquerra G, Gilaberte M, Baro T, et al. Epidermal growth factor receptor gene numerical aberrations are frequent events in actinic keratoses and invasive cutaneous squamous cell carcinomas. Exp Dermatol. 2010;19(2):151–3.

    PubMed  Google Scholar 

  513. Purdie KJ, Harwood CA, Gulati A, Chaplin T, Lambert SR, Cerio R, et al. Single nucleotide polymorphism array analysis defines a specific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol. 2009;129(6):1562–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  514. Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 2008;13(10):1215–22.

    PubMed  CAS  Google Scholar 

  515. Syed DN, Lall RK, Mukhtar H. MicroRNAs and photocarcinogenesis. Photochem Photobiol. 2015;91(1):173–87.

    PubMed  Google Scholar 

  516. Zhou M, Zhou L, Zheng L, Guo L, Wang Y, Liu H, et al. miR-365 promotes cutaneous squamous cell carcinoma (CSCC) through targeting nuclear factor I/B (NFIB). PLoS One. 2014;9(6):e100620.

    PubMed  PubMed Central  Google Scholar 

  517. Gillespie J, Skeeles LE, Allain DC, Kent MN, Peters SB, Nagarajan P, et al. MicroRNA expression profiling in metastatic cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol. 2016;30(6):1043–5.

    PubMed  CAS  Google Scholar 

  518. Kallini JR, Hamed N, Khachemoune A. Squamous cell carcinoma of the skin: epidemiology, classification, management, and novel trends. Int J Dermatol. 2015;54(2):130–40.

    PubMed  Google Scholar 

  519. Newlands C, Currie R, Memon A, Whitaker S, Woolford T. Non-melanoma skin cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S125–S32.

    PubMed  PubMed Central  CAS  Google Scholar 

  520. Brodland DG, Zitelli JA. Surgical margins for excision of primary cutaneous squamous cell carcinoma. J Am Acad Dermatol. 1992;27(2 Pt 1):241–8.

    PubMed  CAS  Google Scholar 

  521. Choi SH, Kim KH, Song KH. Effect of methyl aminolevulinate photodynamic therapy with and without ablative fractional laser treatment in patients with microinvasive squamous cell carcinoma: a randomized clinical trial. JAMA Dermatol. 2017;153(3):289–95.

    PubMed  Google Scholar 

  522. Storm CA, Seykora JT. Cutaneous adnexal neoplasms. Am J Clin Pathol. 2002;118(Suppl):S33–49.

    PubMed  Google Scholar 

  523. Calonje E, Brenn T, Lazar A, McKee P. McKee’s pathology of the skin. Edinburgh: Elsevier/Saunders; 2012.

    Google Scholar 

  524. Alsaad KO, Obaidat NA, Ghazarian D. Skin adnexal neoplasms – part 1: an approach to tumours of the pilosebaceous unit. J Clin Pathol. 2007;60(2):129–44.

    PubMed  CAS  Google Scholar 

  525. McGavran MH, Binnington B. Keratinous cysts of the skin. Arch Dermatol. 1966;94:499–508.

    PubMed  CAS  Google Scholar 

  526. Vandeweyer E, Renard N. Cutaneous cysts: a plea for systematic analysis. Acta Chir Belg. 2003;103:507–10.

    PubMed  CAS  Google Scholar 

  527. Leppard B, Bussey HJR. Epidermoid cysts, polyposis coli and Gardner’s syndrome. Br J Surg. 1975;62:387–93.

    PubMed  CAS  Google Scholar 

  528. Narisawa Y, Kohda H. Cutaneous cysts of Gardner’s syndrome are similar to follicular stem cells. J Cutan Pathol. 1995;22:115–21.

    PubMed  CAS  Google Scholar 

  529. New GB, Erich JB. Dermoid cysts of the head and neck. Surg Gynecol Obstet. 1937;65:48–55.

    Google Scholar 

  530. Brownstein MH, Helwig EB. Subcutaneous dermoid cysts. Arch Dermatol. 1973;107:237–9.

    PubMed  CAS  Google Scholar 

  531. Baums K, Blume-Peytavi U, Dippel E, et al. Eruptive vellus hair cysts. Eur J Dermatol. 2000;10:487–9.

    PubMed  CAS  Google Scholar 

  532. Stiefler RE, Bergfeld WF. Eruptive vellus hair cysts: an inherited disorder. J Am Acad Dermatol. 1980;3:425–9.

    PubMed  CAS  Google Scholar 

  533. Grimalt R, Galmetti C. Eruptive vellus hair cysts: case report and review of the literature. Pediatr Dermatol. 1992;9:98–102.

    PubMed  CAS  Google Scholar 

  534. Tomkova H, Fujimoto W, Arata J. Expression of keratins (K10 and K17) in steatocystoma multiplex, eruptive vellus hair cysts, and epidermoid and trichilemmal cysts. Am J Dermatopathol. 1997;19:250–3.

    PubMed  CAS  Google Scholar 

  535. Requena L, Sánchez YE. Follicular hybrid cysts. An expanded spectrum. Am J Dermatopathol. 1991;13:228–33.

    PubMed  CAS  Google Scholar 

  536. Brownstein MH. Hybrid cyst: a combined epidermoid and trichilemmal cyst. J Am Acad Dermatol. 1983;9:872–5.

    PubMed  CAS  Google Scholar 

  537. Takeda H, Miura A, Katagata Y, et al. Hybrid cyst: case reports and review of 15 cases in Japan. J Eur Acad Dermatol Venereol. 2003;17:83–6.

    PubMed  CAS  Google Scholar 

  538. Cooper PH, Fechner RE. Pilomatricoma-like changes in the epidermal cysts of Gardner’s syndrome. J Am Acad Dermatol. 1983;8:639–44.

    PubMed  CAS  Google Scholar 

  539. May SA, Quirey R, Cockerell CJ. Follicular hybrid cysts with infundibular, isthmic-catagen, and pilomatrical differentiation: a report of 2 patients. Ann Diagn Pathol. 2006;10:110–3.

    PubMed  Google Scholar 

  540. Headington JT. Tumors of the hair follicle. Am J Pathol. 1976;85:480–505.

    Google Scholar 

  541. Mehregan AH. Hair follicle tumors of the skin. J Cutan Pathol. 1985;12:189–95.

    PubMed  CAS  Google Scholar 

  542. Brownstein MH. Basaloid follicular hamartoma: solitary and multiple types. J Am Acad Dermatol. 1992;27:237–40.

    PubMed  CAS  Google Scholar 

  543. Brown AC, Crounse RG, Winkelmann RK. Generalized hair follicle hamartoma associated with alopecia, aminoaciduria and myasthenia gravis. Arch Dermatol. 1969;99:478–93.

    PubMed  CAS  Google Scholar 

  544. Akasaka T, Kon S, Mihm MC Jr. Multiple basaloid cell hamartoma with alopecia and autoimmune disease (systemic lupus erythematosus). J Dermatol. 1996;23:821–4.

    PubMed  CAS  Google Scholar 

  545. Mehregan AH. Infundibular tumors of the skin. J Cutan Pathol. 1984;11:387–95.

    PubMed  CAS  Google Scholar 

  546. Cribier B, Grosshans E. Tumor of the follicular infundibulum: a clinicopathologic study. J Am Acad Dermatol. 1995;33:979–84.

    PubMed  CAS  Google Scholar 

  547. Kolenik SA, Bolognia JL, Castiglione FM, et al. Multiple tumors of the follicular infundibulum. Int J Dermatol. 1996;35:282–4.

    PubMed  Google Scholar 

  548. Steffen C. Winer’s dilated pore: the infundibuloma. Am J Dermatopathol. 2001;23:246–53.

    PubMed  CAS  Google Scholar 

  549. Choi YS, Park SH, Bang D. Pilar sheath acanthoma – report of a case with review of the literature. Yonsei Med J. 1989;30:392–5.

    PubMed  CAS  Google Scholar 

  550. Wilson JE. Proliferating epidermoid cysts. Arch Dermatol. 1966;94:11–9.

    Google Scholar 

  551. Leppard BJ, Sanderson KS. The natural history of trichilemmal cyst. Br J Dermatol. 1976;94:379–90.

    PubMed  CAS  Google Scholar 

  552. Laing V, Knipe RC, Flowers FP, et al. Proliferating trichilemmal tumor: report of a case and review of the literature. J Dermatol Surg Oncol. 1991;17:295–8.

    PubMed  CAS  Google Scholar 

  553. Brownstein MH, Arluk DJ. Proliferating trichilemmal cyst: a simulant of squamous cell carcinoma. Cancer. 1981;48:1207–14.

    PubMed  CAS  Google Scholar 

  554. Rahbari H, Mehregan AH, Pinkus H. Trichoadenoma of nikolowski. J Cutan Pathol. 1977;4:90–8.

    PubMed  CAS  Google Scholar 

  555. Chan P, White SW, Pierson DL, Rodman OG. Trichilemmoma. J Dermatol Surg Oncol. 1979;5(1):58–9.

    PubMed  CAS  Google Scholar 

  556. Hidayat AA, Font RL. Trichilemmoma of eyelid and eyebrow: a clinicopathologic study of 31 cases. Arch Ophthalmol. 1980;98(5):844–7.

    PubMed  CAS  Google Scholar 

  557. Brownstein MH, Mehregan AH, Bikowski JB, Lupulescu A, Patterson JC. The dermatopathology of Cowden’s syndrome. Br J Dermatol. 1979;100(6):667–73.

    PubMed  CAS  Google Scholar 

  558. Salem OS, Steck WD. Cowden’s disease (multiple hamartoma and neoplasia syndrome): a case report and review of the English literature. J Am Acad Dermatol. 1983;8(5):686–96.

    PubMed  CAS  Google Scholar 

  559. Tellechea O, Reis JP, Baptista AP. Desmoplastic trichilemmoma. Am J Dermatopathol. 1992;14:107–14.

    PubMed  CAS  Google Scholar 

  560. Hunt SJ, Kilzer PB, Santa CD. Desmoplastic trichilemmoma: histological variant resembling invasive carcinoma. J Cutan Pathol. 1990;17:45–52.

    PubMed  CAS  Google Scholar 

  561. Lloyd KM II, Dennis M. Cowden’s disease. A possible new symptom complex with multiple system involvement. Ann Intern Med. 1963;58:136–42.

    PubMed  Google Scholar 

  562. Tarink TM, van der Veen JP, Arwert F, et al. The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet. 1986;29(3):222–33.

    Google Scholar 

  563. Fistarol SK, Anliker MD, Itin PH. Cowden disease or multiple hamartoma syndrome—cutaneous clue to internal malignancy. Eur J Dermatol. 2002;12(5):411–21.

    PubMed  Google Scholar 

  564. Schrager CA, Schneider D, Gruener AC, Tsou HC, Peacocke M. Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol. 1998;29:47–53.

    PubMed  CAS  Google Scholar 

  565. Brownstein MH, Wolf M, Bikowski JB. Cowden’s disease: a cutaneous marker of breast cancer. Cancer. 1978;41(6):2393–8.

    PubMed  CAS  Google Scholar 

  566. Tan MH, Mester JL, Ngeow J, Rybicki LA, Orloff MS, Eng C. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  567. Nusbaum R, Vogel KJ, Ready K. Susceptibility to breast cancer: hereditary syndromes and low penetrance genes. Breast Dis. 2006;27:21–50.

    PubMed  Google Scholar 

  568. Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum Genet. 2008;16(11):1289–300.

    PubMed  CAS  Google Scholar 

  569. Nelen MR, Padberg GW, Peeters EA, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet. 1996;13(1):114–6.

    PubMed  CAS  Google Scholar 

  570. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    PubMed  CAS  Google Scholar 

  571. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98.

    PubMed  CAS  Google Scholar 

  572. Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11(10):687–94.

    PubMed  CAS  Google Scholar 

  573. Orloff MS, He X, Peterson C, et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet. 2013;92(1):76–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  574. Cho YJ, Liang P. Killin is a p53-regulated nuclear inhibitor of DNA synthesis. Proc Natl Acad Sci U S A. 2008;105(14):5396–401.

    PubMed  PubMed Central  CAS  Google Scholar 

  575. Bennett KL, Mester J, Eng C. Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. JAMA. 2010;304(24):2724–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  576. Al-Zaid T, Ditelberg JS, Prieto VG, et al. Trichilemmomas show loss of PTEN in Cowden syndrome but only rarely in sporadic tumors. J Cutan Pathol. 2012;39(5):493–9.

    PubMed  Google Scholar 

  577. Gray HR, Helwig EB. Epithelioma adenoides cysticum and solitary trichoepithelioma. Arch Dermatol. 1963;87:102–13.

    PubMed  CAS  Google Scholar 

  578. Geffner RE, Goslen JB, Santa-Cruz DJ. Linear and dermatomal trichoepitheliomas. J Am Acad Dermatol. 1986;14:927–30.

    PubMed  CAS  Google Scholar 

  579. Bettencourt MS, Prieto VG, Shea CR. Trichoepithelioma: a 19-year clinicopathologic re-evaluation. J Cutan Pathol. 1999;26(8):398–404.

    PubMed  CAS  Google Scholar 

  580. Costache M, Bresch M, Böer A. Desmoplastic trichoepithelioma versus morphoeic basal cell carcinoma: a critical reappraisal of histomorphological and immunohistochemical criteria for differentiation. Histopathology. 2008;52:865–76.

    PubMed  CAS  Google Scholar 

  581. Hoang MP. Role of immunohistochemistry in diagnosing tumors of cutaneous appendages. Am J Dermatopathol. 2011;33(8):765–71.

    PubMed  Google Scholar 

  582. Tebcherani AJ, de Andrade HF Jr, Sotto MN. Diagnostic utility of immunohistochemistry in distinguishing trichoepithelioma and basal cell carcinoma: evaluation using tissue microarray samples. Mod Pathol. 2012;25(10):1345–53.

    PubMed  CAS  Google Scholar 

  583. Choi CW, Park HS, Kim YK, et al. Elastic fiber staining and cytokeratin 15 expression pattern in trichoepithelioma and basal cell carcinoma. J Dermatol. 2008;35(8):499–502.

    PubMed  Google Scholar 

  584. Hartschuh W, et al. Merkel cells are integrant constituent of desmoplastic trichoepitheliomas: an immunohistochemical and electron microscopy study. J Cutan Pathol. 1995;22:422–6.

    Google Scholar 

  585. Mahmoodi M, Asad H, Salim S, Kantor G, Minimo C. Anti-cytokeratin 20 staining of Merkel cells helps differentiate basaloid proliferations overlying dermatofibromas from basal cell carcinomas. J Cutan Pathol. 2005;32(7):491–5.

    PubMed  Google Scholar 

  586. Abdelsayed RA, Guijarro-Rojas M, Ibrahim NA, et al. Immunohistochemical evaluation of basal cell carcinoma and trichoepithelioma using Bcl-2, Ki-67, PCNA, and P53. J Cutan Pathol. 2000;27(4):169–75.

    PubMed  CAS  Google Scholar 

  587. Ansai S, Takayama R, Kimura T, Kawana S. Ber-EP4 is a useful marker for follicular germinative cell differentiation of cutaneous epithelial neoplasms. J Dermatol. 2012;39(8):688–92.

    PubMed  Google Scholar 

  588. Arits AH, Van Marion AM, Lohman BG, et al. Differentiation between basal cell carcinoma and trichoepithelioma by immunohistochemical staining of the androgen receptor: an overview. Eur J Dermatol. 2011;21(6):870–3.

    PubMed  Google Scholar 

  589. Katona TM, Perkins SM, Billings SD. Does the panel of cytokeratin 20 and androgen receptor antibodies differentiate desmoplastic trichoepithelioma from morpheaform/infiltrative basal cell carcinoma? J Cutan Pathol. 2008;35(2):174–9.

    PubMed  Google Scholar 

  590. Kirchmann TT, Prieto VG. Smaller BR.CD34 staining pattern distinguishes basal cell carcinoma from trichoepithelioma. Arch Dermatol. 1994;130(5):589–92.

    PubMed  CAS  Google Scholar 

  591. Pham TT, Selim MA, Burchette JL, et al. CD10 expression in trichoepithelioma and basal cell carcinoma. J Cutan Pathol. 2006;33:123–8.

    PubMed  Google Scholar 

  592. Sellheyer K, Krahl D. PHLDA1 (TDAG1) is a follicular stem cell marker and differentiates between morphoeic basal cell carcinoma and desmoplastic trichoepithelioma. Br J Dermatol. 2011;164(1):141–7.

    PubMed  CAS  Google Scholar 

  593. Harada H, Hashimoto K, Ko MS. The gene for multiple familial trichoepithelioma maps to chromosome 9p21. J Invest Dermatol. 1996;107:41–3.

    PubMed  CAS  Google Scholar 

  594. Kazakov DV, Zelger B, Rutten A, et al. Morphologic diversity of malignant neoplasms arising in preexisting spiradenoma, cylindroma, and spiradenocylindroma based on the study of 24 cases, sporadic or occurring in the setting of Brooke-Spiegler syndrome. Am J Surg Pathol. 2009;33(5):705–19.

    PubMed  Google Scholar 

  595. Taaffe A, Wyatt EH, Bury HPR. Pilomatrixoma (Malherbe). A clinical and histopathological survey of 78 cases. Int J Dermatol. 1988;27:477–80.

    PubMed  CAS  Google Scholar 

  596. Julian CG, Bowers PW. A clinical review of 209 pilomatricomas. J Am Acad Dermatol. 1998;39(2, pt 1):191–5.

    PubMed  CAS  Google Scholar 

  597. Lan MY, Lan MC, Ho CY, Li WY, Lin CZ. Pilomatricoma of the head and neck: a retrospective review of 179 cases. Arch Otolaryngol Head Neck Surg. 2003;129(12):1327–30.

    PubMed  Google Scholar 

  598. Marrogi AJ, Wick MR, Dehner LP. Pilomatrical neoplasms in children and young adults. Am J Dermatopathol. 1992;14(2):87–94.

    PubMed  CAS  Google Scholar 

  599. O’Connor N, Patel M, Umar T, Macpherson DW, Ethunandan M. Head and neck pilomatricoma: an analysis of 201 cases. Br J Oral Maxillofac Surg. 2011;49(5):354–8.

    PubMed  Google Scholar 

  600. Berberian BJ, Colonna TM, Battaglia M, Sulica VI. Multiple pilomatricomas in association with myotonic dystrophy and a family history of melanoma. J Am Acad Dermatol. 1997;37(2, pt 1):268–9.

    PubMed  CAS  Google Scholar 

  601. Wood S, Nguyen D, Hutton K, Dickson W. Pilomatricomas in Turner syndrome. Pediatr Dermatol. 2008;25(4):449–51.

    PubMed  Google Scholar 

  602. Geh JL, Moss AL. Multiple pilomatrixomata and myotonic dystrophy: a familial association. Br J Plast Surg. 1999;52:143–5.

    PubMed  CAS  Google Scholar 

  603. Cambiaghi S, Ermacora E, Brusasco A, Canzi L, Caputo R. Multiple pilomatricomas in Rubinstein-Taybi syndrome: a case report. Pediatr Dermatol. 1994;11(1):21–5.

    PubMed  CAS  Google Scholar 

  604. Gilaberte Y, Ferrer-Lozano M, Oliván MJ, et al. Multiple giant pilomatricoma in familial Sotos syndrome. Pediatr Dermatol. 2008;25:122–5.

    PubMed  Google Scholar 

  605. Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet. 1999;21(4):410–3.

    PubMed  CAS  Google Scholar 

  606. Kajino Y, Yamaguchi A, Hashimoto N, Matsuura A, Sato N, Kikuchi K. beta-Catenin gene mutation in human hair follicle-related tumors. Pathol Int. 2001;51(7):543–8.

    PubMed  CAS  Google Scholar 

  607. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691–701.

    PubMed  CAS  Google Scholar 

  608. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42.

    PubMed  CAS  Google Scholar 

  609. van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev. 2003;13(1):28–33.

    PubMed  Google Scholar 

  610. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    PubMed  CAS  Google Scholar 

  611. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  612. Xia J, Urabe K, Moroi Y, et al. beta-Catenin mutation and its nuclear localization are confirmed to be frequent causes of Wnt signalling pathway activation in pilomatricomas. J Dermatol Sci. 2006;41:67–75.

    PubMed  CAS  Google Scholar 

  613. Kazakov DV, Sima R, Vanecek T, et al. Mutations in exon 3 of the CTNNB1 gene (beta-catenin gene) in cutaneous adnexal tumors. Am J Dermatopathol. 2009;31:248–55.

    PubMed  Google Scholar 

  614. Moreno-Bueno G, Gamallo C, Perez-Gallego L, Contreras F, Palacios J. beta-catenin expression in pilomatrixomas: relationship with beta-catenin gene mutations and comparison with beta-catenin expression in normal hair follicles. Br J Dermatol. 2001;145(4):576–81.

    PubMed  CAS  Google Scholar 

  615. Farrier S, Morgan M. bcl-2 expression in pilomatricoma. Am J Dermatopathol. 1997;19(3):254–7.

    PubMed  CAS  Google Scholar 

  616. Carson JA, Healy K, Slominsky A, et al. Melanocytic matricoma: a report of two cases of a new entity. Am J Dermatopathol. 1999;21:344–9.

    Google Scholar 

  617. Resnik KS. Is melanocytic matricoma a bona fide entity or it is just one type of matricoma? Am J Dermatopathol. 2003;25:493–8.

    Google Scholar 

  618. Starink TM, Brownstein MH. Fibrofolliculoma: solitary and multiple types. J Am Acad Dermatol. 1987;17:493–6.

    PubMed  CAS  Google Scholar 

  619. Scully K, Bargman H, Assaad D. Solitary fibrofolliculoma. J Am Acad Dermatol. 1984;11:361–3.

    PubMed  CAS  Google Scholar 

  620. Foucar K, Rosen T, Foucar E, et al. Fibrofolliculoma: a clinicopathologic study. Cutis. 1981;28:429–32.

    PubMed  CAS  Google Scholar 

  621. Coskey RJ, Pinkus H. Trichodiscoma. Int J Dermatol. 1976;15:600–1.

    PubMed  CAS  Google Scholar 

  622. Starink TM, Kisch LS, Meijer CJLM. Familial multiple trichodiscomas: a clinicopathologic study. Arch Dermatol. 1985;121:888–91.

    PubMed  CAS  Google Scholar 

  623. Birt AR, Hogg GR, Dube WJ. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1977;113(12):1674–7.

    PubMed  CAS  Google Scholar 

  624. Fujita WH, Barr RJ, Headley JL. Multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol. 1981;117:32–5.

    PubMed  CAS  Google Scholar 

  625. Toro JR, Wei M-H, Glenn GM, et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dube syndrome: a new series of 50 families and a review of published reports. J Med Genet. 2008;45(6):321–31.

    PubMed  CAS  Google Scholar 

  626. Toro JR, Glenn G, Duray P, Darling T, Weirich G, Zbar B, Linehan M, Turner ML. Birt-Hogg-Dubé syndrome: a novel marker of kidney neoplasia. Arch Dermatol. 1999;135(10):1195–202.

    PubMed  CAS  Google Scholar 

  627. Zbar B, Alvord WG, Glenn G, et al. Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt–Hogg–Dube syndrome. Cancer Epidemiol Biomark Prev. 2002;11:393–400.

    Google Scholar 

  628. Schmidt LS, Warren MB, Nickerson ML, et al. Birt- Hogg-Dubé syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet. 2001;69:876–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  629. Khoo SK, Bradley M, Wong FK, et al. Birt-Hogg-Dube syndrome: mapping of a novel hereditary neoplasia gene to chromosome 17p12-q11.2. Oncogene. 2001;20:5239–42.

    PubMed  CAS  Google Scholar 

  630. Schmidt LS, Nickerson ML, Warren MB, et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubé syndrome. Am J Hum Genet. 2005;76(6):1023–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  631. Lim DH, Rehal PK, Nahorski MS, et al. A new locus-specific database (LSDB) for mutations in the folliculin (FLCN) gene. Hum Mutat. 2010;31(1):E1043–51.

    PubMed  Google Scholar 

  632. Wei MH, Blake PW, Shevchenko J, et al. The folliculin mutation database: an online database of mutations associated with Birt-Hogg-Dubé syndrome. Hum Mutat. 2009;30(9):E880–90.

    PubMed  PubMed Central  Google Scholar 

  633. Vocke CD, Yang Y, Pavlovich CP, et al. High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors. J Natl Cancer Inst. 2005;97(12):931–5.

    PubMed  CAS  Google Scholar 

  634. van Steensel MA, Verstraeten VL, Frank J, et al. Novel mutations in the BHD gene and absence of loss of heterozygosity in fibrofolliculomas of Birt-Hogg-Dubé patients. J Invest Dermatol. 2007;127(3):588–93.6.

    PubMed  Google Scholar 

  635. Baba M, Hong SB, Sharma N, et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci U S A. 2006;103(42):15552–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  636. Hasumi H, Baba M, Hong SB, et al. Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene. 2008;415(1–2):60–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  637. Hong SB, Oh H, Valera VA, et al. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One. 2010;5(12):e15793.

    PubMed  PubMed Central  Google Scholar 

  638. Menko FH, van Steensel MA, Giraud S, et al. Birt-Hogg-Dubé syndrome: diagnosis and management. Lancet Oncol. 2009;10(12):1199–206.

    PubMed  CAS  Google Scholar 

  639. Swanson PE, Marrogi AJ, Williams DJ, et al. Trichilemmal carcinoma: clinicopathologic study of 10 cases. J Cutan Pathol. 1992;19:100–9.

    PubMed  CAS  Google Scholar 

  640. Reis JP, Tellechea O, Cunha MF, et al. Trichilemmal carcinoma: review of 8 cases. J Cutan Pathol. 1993;20:44–9.

    PubMed  CAS  Google Scholar 

  641. Wong T-Y, Suster S. Trichilemmal carcinoma: a clinicopathologic study of 13 cases. Am J Dermatopathol. 1994;6:463–73.

    Google Scholar 

  642. Nappi O, Swanson PE, et al. Proliferating pilar tumors: a clinicopathologic study of 76 cases with a proposal for definition of benign and malignant variants. Am J Clin Pathol. 2004;122:566–74.

    PubMed  Google Scholar 

  643. Weiss J, Heine M, Grimmel M, et al. Malignant proliferating trichilemmal cyst. J Am Acad Dermatol. 1995;32:870–3.

    PubMed  CAS  Google Scholar 

  644. Saida T, Oohara K, Hori Y, et al. Development of a malignant proliferating trichilemmal cyst in a patient with multiple trichilemmal cysts. Dermatologica. 1983;166:203–8.

    PubMed  CAS  Google Scholar 

  645. Satyaprakash AK, Sheehan DJ, Sangueza OP. Proliferating trichilemmal tumors: a review of the literature. Dermatol Surg. 2007;34(10):782–7.

    Google Scholar 

  646. Takata M, Rehman I, Rees JL. A trichilemmal carcinoma arising from a proliferating trichilemmal cyst: the loss of the wild-type p53 is a critical event in malignant trans-formation. Hum Pathol. 1998;29:193–5.

    PubMed  CAS  Google Scholar 

  647. Folpe AL, Reisenauer AK, Mentzel T, Rütten A, Solomon AR. Proliferating trichilemmal tumors: clinicopathologic evaluation is a guide to biologic behavior. J Cutan Pathol. 2003;30:492–8.

    PubMed  Google Scholar 

  648. Sau P, Lupton GP, Graham JH. Pilomatrix carcinoma. Cancer. 1993;71:2491–8.

    PubMed  CAS  Google Scholar 

  649. Monchy D, McCarthy SW, Dubourdieu D. Malignant pilomatrixoma of the scalp. Pathology. 1985;27:201–3.

    Google Scholar 

  650. Lopansri S, Mihm MC Jr. Pilomatrix carcinoma or calcifying epitheliocarcinoma of Malherbe. Cancer. 1980;45:2368–73.

    PubMed  CAS  Google Scholar 

  651. Weeden D, Bell J, Maize J. Matrical carcinoma of the skin. J Cutan Pathol. 1980;7:39–42.

    Google Scholar 

  652. Chen KTK, Taylor DR. Pilomatrix carcinoma. J Surg Oncol. 1986;33:112–4.

    PubMed  CAS  Google Scholar 

  653. Van Der Walt JD, Rohlova B. Carcinomatous transformation in a pilomatrixoma. Am J Dermatopathol. 1984;6:63–9.

    PubMed  Google Scholar 

  654. Gould E, Kurzon R, Kowalczyk AP, et al. Pilomatrix carcinoma with pulmonary metastases. Cancer. 1984;54:370–2.

    PubMed  CAS  Google Scholar 

  655. Barnes M, Hestley A, Murray DR, et al. The risk of lymph node involvement in malignant cutaneous adnexal tumors. Am Surg. 2014;80(3):270–4.

    PubMed  Google Scholar 

  656. Rulon DB, Helwig EB. Cutaneous sebaceous neoplasms. Cancer. 1974;33:82–102.

    PubMed  CAS  Google Scholar 

  657. Steffen CH, Ackerman AB. Ectopic sebaceous glands. In: Neoplasms with sebaceous differentiation. Philadelphia: Lea & Febiger; 1994. p. 71–88.

    Google Scholar 

  658. Steffen CH, Ackerman AB. Embrologic, anatomic and histologic aspects. In: Neoplasms with sebaceous differentiation. Philadelphia: Lea & Febiger; 1994. p. 25–52.

    Google Scholar 

  659. Nakada T, Inoue F, Iwasaki M, Nagayama K, Tanaka T. Ectopic sebaceous glands in the esophagus. Am J Gastroenterol. 1995;90(3):501–3.

    PubMed  CAS  Google Scholar 

  660. Arnold HL. Fordyce spots. Arch Dermatol. 1974;110:811.

    PubMed  Google Scholar 

  661. Bakaris S, Kiran H, Kiran G. Sebaceous gland hyperplasia of the vulva. Aust N Z J Obstet Gynaecol. 2004;44:75–6.

    PubMed  Google Scholar 

  662. Belousova IE, Kazakov DV, Michal M. Ectopic sebaceous glands in the vagina. Int J Gynecol Pathol. 2005;24:193–5.

    PubMed  Google Scholar 

  663. Mehregan AH, Pinkus H. Life history of organoid nevi. Special reference to nevus sebaceus of Jadassohn. Arch Dermatol. 1965;91:574–88.

    PubMed  CAS  Google Scholar 

  664. Morioka S. The natural history of nevus sebaceus. J Cutan Pathol. 1985;12:200–13.

    PubMed  CAS  Google Scholar 

  665. Weng CJ, Tsai YC, Chen TJ. Jadassohn’s nevus sebaceous of the head and face. Ann Plast Surg. 1990;25:100–2.

    PubMed  CAS  Google Scholar 

  666. Idriss MH, Elston DM. Secondary neoplasms associated with nevus sebaceus of Jadassohn: a study of 707 cases. J Am Acad Dermatol. 2014;70(2):332–7.

    PubMed  Google Scholar 

  667. Rosenblum GA. Nevus sebaceus, syringocystadenoma papilliferum, and basal cell epithelioma. J Dermatol Surg Oncol. 1985;11:1018–20.

    PubMed  CAS  Google Scholar 

  668. Izumi M, Tang X, Chiu CS, et al. Ten cases of sebaceous carcinoma arising in nevus sebaceus. J Dermatol. 2008;35:704–11.

    PubMed  Google Scholar 

  669. Kazakov DV, Calonje E, Zelger B, et al. Sebaceous carcinoma arising in nevus sebaceus of Jadassohn: a clinicopathological study of five cases. Am J Dermatopathol. 2007;29:242–8.

    PubMed  Google Scholar 

  670. van de Warrenburg BP, van Gulik S, Renier WO, et al. The linear naevus sebaceus syndrome. Clin Neurol Neurosurg. 1998;100:126–32.

    PubMed  Google Scholar 

  671. Feuerstein RC, Mims LC. Linear nevus sebaceus with convulsions and mental retardation. Am J Dis Child. 1962;104:675–9.

    PubMed  CAS  Google Scholar 

  672. Happle R. Gustav Schimmelpenning and the syndrome bearing his name. Dermatology. 2004;209:84–7.

    PubMed  Google Scholar 

  673. Warnke PH, Hauschild A, Schimmelpenning G, et al. The sebaceous nevus as part of the Schimmelpenning-Feuerstein-Mims syndrome – an obvious phacomatosis first documented in 1927. J Cutan Pathol. 2003;30:470–2.

    PubMed  CAS  Google Scholar 

  674. Xin H, Matt D, Qin JZ, et al. The sebaceous nevus: a nevus with deletions of the PTCH gene. Cancer Res. 1999;59:1834–6.

    PubMed  CAS  Google Scholar 

  675. Hurley HJ, LoPresti PJ. Steatocystoma multiplex. Arch Dermatol. 1965;92:110–1.

    PubMed  Google Scholar 

  676. Cho S, Chang SE, Choi JH, et al. Clinical and histologic features of 64 cases of steatocystoma multiplex. J Dermatol. 2002;29:152–6.

    PubMed  Google Scholar 

  677. Covello SP, Smith FJ, SillevisSmitt JH, Paller AS, Munro CS, Jonkman MF, et al. Keratin 17 mutations cause either steatocystoma multiplex or pachyonychia congenita type 2. Br J Dermatol. 1998;139(3):475–80.

    PubMed  CAS  Google Scholar 

  678. Smith FJ, Corden LD, Rugg EL, et al. Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. J Invest Dermatol. 1997;108:220–3.

    PubMed  CAS  Google Scholar 

  679. Gianotti R, Cavicchini S, Alessi E. Simultaneous occurrence of multiple trichoblastomas and steatocystoma multiplex. Am J Dermatopathol. 1997;19:294–8.

    PubMed  CAS  Google Scholar 

  680. Steffen C, Ackerman AB. Neoplasms with sebaceous differentiation. Philadelphia: Lea & Febiger; 1994:751p.

    Google Scholar 

  681. Salim A, Reece SM, Smith AG, et al. Sebaceous hyperplasia and skin cancer in patients undergoing renal transplant. J Am Acad Dermatol. 2006;55:878–81.

    PubMed  Google Scholar 

  682. Pang SM, Chau YP. Cyclosporine-induced sebaceous hyperplasia in renal transplant patients. Ann Acad Med Singap. 2005;34:391–3.

    PubMed  CAS  Google Scholar 

  683. Dahlhoff M, de Angelis MH, Wolf E, Schneider MR. Ligand-independent epidermal growth factor receptor hyperactivation increases sebaceous gland size and sebum secretion in mice. Exp Dermatol. 2013;22:667–9.

    PubMed  CAS  Google Scholar 

  684. Cui CY, Durmowicz M, Ottolenghi C, et al. Inducible mEDA-A1 transgene mediates sebaceous hyperplasia and differential formation of two types of mouse hair follicles. Hum Mol Genet. 2003;12:2931–40.

    PubMed  CAS  Google Scholar 

  685. Mehregan AH, Rahbari H. Benign epithelial tumors of the skin II: benign sebaceous tumors. Cutis. 1977;19:317–20.

    PubMed  CAS  Google Scholar 

  686. Takeda H, Lyle S, Lazar AJF, et al. Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med. 2006;12:395–7.

    PubMed  CAS  Google Scholar 

  687. Niemann C, Unden AB, Lyle S, Zouboulis Ch C, Toftgard R, Watt FM. Indian hedgehog and beta- catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11873–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  688. Troy JL, Ackerman AB. Sebaceoma. A distinctive benign neoplasm of adnexal epithelium differentiating toward sebaceous cells. Am J Dermatopathol. 1984;6:7–13.

    PubMed  CAS  Google Scholar 

  689. Misago N, Mihara I, Ansai S, Narisawa Y. Sebaceoma and related neoplasms with sebaceous differentiation: a clinicopathologic study of 30 cases. Am J Dermatopathol. 2002;24:294–304.

    PubMed  Google Scholar 

  690. Rao NA, Hidayat AA, McLean IW, Zimmerman LE. Sebaceous carcinomas of the ocular adnexa: a clinicopathologic study of 104 cases, with five-year follow-up data. Hum Pathol. 1982;13:113–22.

    PubMed  CAS  Google Scholar 

  691. Shields JA, Demirci H, Marr BP, Eagle RC Jr, Shields CL. Sebaceous carcinoma of the eyelids: personal experience with 60 cases. Ophthalmology. 2004;111:2151–7.

    PubMed  Google Scholar 

  692. Wick MR, Goellner JR, Wolfe JT, et al. Adnexal carcinomas of the skin. II Extraocular sebaceous carcinomas. Cancer. 1985;56:1163–72. http://www.ncbi.nlm.nih.gov/pubmed/4016704

    PubMed  CAS  Google Scholar 

  693. Nelson BR, Hamlet KR, Gillard M, et al. Sebaceous carcinoma. J Am Acad Dermatol. 1995;33:1–15.

    PubMed  CAS  Google Scholar 

  694. Dasgupta T, Wilson LD, Yu JB. A retrospective review of 1349 cases of sebaceous carcinoma. Cancer. 2009;115:158–65.

    PubMed  Google Scholar 

  695. Kazakov DV, Kutzner H, Spagnolo DV, et al. Discordant architectural and cytologic features in cutaneous sebaceous neoplasms – a classification dilemma: report of 5 cases. Am J Dermatopathol. 2009;31(1):31–6.

    PubMed  Google Scholar 

  696. Yeatts RP, Waller RR. Sebaceous carcinoma of the eyelid: pitfalls in diagnosis. Ophthal Plast Reconstr Surg. 1985;1:35–42.

    PubMed  CAS  Google Scholar 

  697. Ansai S, Takeichi H, Arase S, et al. Sebaceous carcinoma: an immunohistochemical reappraisal. Am J Dermatopathol. 2011;33:579–87.

    PubMed  Google Scholar 

  698. Ruizeveld de Winter JA, Trapman J, Vermey M, et al. Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem. 1991;39:927–36.

    PubMed  CAS  Google Scholar 

  699. Bayer-Garner IB, Givens V, Smoller B. Immunohistochemical staining for androgen receptors: a sensitive marker of sebaceous differentiation. Am J Dermatopathol. 1999;21:426–31.

    PubMed  CAS  Google Scholar 

  700. Asadi-Amoli F, Khoshnevis F, Haeri H, et al. Comparative examination of androgen receptor reactivity for differential diagnosis of sebaceous carcinoma from squamous cell and basal cell carcinoma. Am J Clin Pathol. 2010;134:22–6.

    PubMed  Google Scholar 

  701. Plaza JA, Mackinnon A, Carrillo L, Prieto VG, Sangueza M, Suster S. Role of immunohistochemistry in the diagnosis of sebaceous carcinoma: a clinicopathologic and immunohistochemical study. Am J Dermatopathol. 2015;37(11):809–21.

    PubMed  Google Scholar 

  702. Fan YS, Carr RA, Sanders DSA, et al. Characteristic Ber-EP4 and EMA expression in sebaceoma is immunohistochemically distinct from basal cell carcinoma. Histopathology. 2007;51:80–6.

    PubMed  CAS  Google Scholar 

  703. Liu Y, Lyle S, Yang Z, Cotsarelis G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol. 2003;121:963–8. https://doi.org/10.1046/j.1523-1747.2003.12600.

    Article  PubMed  CAS  Google Scholar 

  704. Misago N, Narisawa Y. Cytokeratin 15 expression in neoplasms with sebaceous differentiation. J Cutan Pathol. 2006;33:634–41.

    PubMed  Google Scholar 

  705. Yang HM, Cabral E, Dadras SS, Cassarino DS. Immunohistochemical expression of D2-40 in benign and malignant sebaceous tumors and comparison to basal and squamous cell carcinomas. Am J Dermatopathol. 2008;30(6):549–54.

    PubMed  Google Scholar 

  706. Krahl D, Sellheyer K. Basal cell carcinoma and pilomatrixoma mirror human follicular embryogenesis as reflected by their differential expression patterns of SOX9 and β-catenin. Br J Dermatol. 2010;162(6):1294–301.

    PubMed  CAS  Google Scholar 

  707. Heyl J, Mehregan D. Immunolabeling pattern of cytokeratin 19 expression may distinguish sebaceous tumors from basal cell carcinomas. J Cutan Pathol. 2008;35:40–5.

    PubMed  Google Scholar 

  708. Straub BK, Herpel E, Singer S, et al. Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Mod Pathol. 2010;23:480–92.

    PubMed  CAS  Google Scholar 

  709. Muthusamy K, Halbert G, Roberts F. Immunohistochemical staining for adipophilin, perilipin and TIP47. J Clin Pathol. 2006;59:1166–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  710. Ostler DA, Prieto VG, Reed JA, et al. Adipophilin expression in sebaceous tumors and other cutaneous lesions with clear cell histology: an immunohistochemical study of 117 cases. Mod Pathol. 2010;23:567–73.

    PubMed  CAS  Google Scholar 

  711. Boussahmain C, Mochel MC, Hoang MP. Perilipin and adipophilin expression in sebaceous carcinoma and mimics. Hum Pathol. 2013;44:1811–6.

    PubMed  CAS  Google Scholar 

  712. Jakobiec FA, Mendoza PR. Eyelid sebaceous carcinoma: clinicopathologic and multiparametric immunohistochemical analysis that includes adipophilin. Am J Ophthalmol. 2014;157:186–208.e2.

    PubMed  CAS  Google Scholar 

  713. Milman T, Schear MJ, Eagle RC Jr. Diagnostic utility of adipophilin immunostain in periocular carcinomas. Ophthalmology. 2014;121:964–71.

    PubMed  Google Scholar 

  714. Chen WS, Chen PL, Li J, et al. Lipid synthesis and processing proteins ABHD5, PGRMC1 and squalene synthase can serve as novel immunohistochemical markers for sebaceous neoplasms and differentiate sebaceous carcinoma from sebaceoma and basal cell carcinoma with clear cell features. J Cutan Pathol. 2013;40:631–8.

    PubMed  Google Scholar 

  715. Gonzalez-Fernandez F, Kaltreider SA, Patnaik BD, Retief JD, Bao Y, Newman S, Stoler MH, Levine PA. Sebaceous carcinoma: tumor progression through mutational inactivation of p53. Ophthalmology. 1998;105:497–506.

    PubMed  CAS  Google Scholar 

  716. Cabral ES, Auerbach A, Killian JK, Barrett TL, Cassarino DS. Distinction of benign sebaceous proliferations from sebaceous carcinomas by immunohistochemistry. Am J Dermatopathol. 2006;28:465–71.

    PubMed  Google Scholar 

  717. Shalin SC, Lyle S, Calonje E, Lazar AJL. Sebaceous neoplasia and the Muir–Torre syndrome: important connections with clinical implications. Histopathology. 2010;56(1):133–47.

    PubMed  PubMed Central  Google Scholar 

  718. Kiyosaki K, Nakada C, Hijiya N, et al. Analysis of p53 mutations and the expression of p53 and p21WAF1/CIP1 protein in 15 cases of sebaceous carcinoma of the eyelid. Invest Ophthalmol Vis Sci. 2010;51:7–11.

    PubMed  Google Scholar 

  719. Kim N, Kim JE, Choung HK, Lee MJ, Khwarg SI. Expression of cell cycle regulatory proteins in eyelid sebaceous gland carcinoma: low p27 expression predicts poor prognosis. Exp Eye Res. 2014;118:46–52.

    PubMed  CAS  Google Scholar 

  720. Hasebe T, Mukai K, Yamaguchi N, et al. Prognostic value of immunohistochemical staining for PCNA, p53, and c-erbB-2 in sebaceous gland carcinoma and sweat gland carcinoma: comparison with histopathological parameter. Mod Pathol. 1994;7:37–43.

    PubMed  CAS  Google Scholar 

  721. Ivan D, Prieto VG, Esmaeli B, Wistuba II, Tang X, Lazar AJ. Epidermal growth factor receptor (EGFR) expression in periocular and extraocular sebaceous carcinoma. J Cutan Pathol. 2010;37(2):231–6.

    PubMed  Google Scholar 

  722. Lee MJ, Kim N, Choung HK, Choe JY, Khwarg SI, Kim JE. Increased gene copy number of HER2 and concordant protein overexpression found in a subset of eyelid sebaceous gland carcinoma indicate HER2 as a potential therapeutic target. J Cancer Res Clin Oncol. 2016;142:125.

    PubMed  CAS  Google Scholar 

  723. Muir EG, Bell AJY, Barlow KA. Multiple primary carcinoma of the colon, duodenum and larynx associated with keratoacanthoma of the face. Br J Surg. 1967;54:191.

    PubMed  CAS  Google Scholar 

  724. Torre D. Multiple sebaceous gland tumors. Arch Dermatol. 1968;98:549.

    PubMed  CAS  Google Scholar 

  725. Singh RS, Grayson W, Redston M, et al. Site and tumor type predicts DNA mismatch repair status in cutaneous sebaceous neoplasia. Am J Surg Pathol. 2008;32:936–42.

    PubMed  Google Scholar 

  726. Abbas O, Mahalingam M. Cutaneous sebaceous neoplasms as markers of Muir-Torre syndrome: a diagnostic algorithm. J Cutan Pathol. 2009;36:613–9.

    PubMed  Google Scholar 

  727. Roberts ME, Rigert-Johnson DL, Thomas BC, et al. Screening for Muir-Torre syndrome using mismatch repair protein immunohistochemistry of sebaceous neoplasms. J Genet Counsel. 2013;22:393–405.

    Google Scholar 

  728. Ponti G, Ponz de Leon M. Muir-Torre syndrome. Lancet Oncol. 2005;6(12):980.

    PubMed  Google Scholar 

  729. Schwartz RA, Torre DP. The Muir-Torre syndrome: a 25 years retrospect. J Am Acad Dermatol. 1995;33:90.

    PubMed  CAS  Google Scholar 

  730. Cohen PR, Kohn SR, Kurzrock R. Association of sebaceous gland and internal malignancy: the Muir-Torre syndrome. Am J Med. 1991;90:606.

    PubMed  CAS  Google Scholar 

  731. Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21:1174.

    PubMed  CAS  Google Scholar 

  732. Kruse R, Ruzicka T. DNA mismatch repair and the significance of a sebaceous skin tumor for visceral cancer prevention. Trends Mol Med. 2004;10:136.

    PubMed  CAS  Google Scholar 

  733. Dietmaier W, Wallinger S, Bocker T, et al. Diagnostic microsatellite instability: definition and correlation with mis- match repair protein expression. Cancer Res. 1997;57:4749.

    PubMed  CAS  Google Scholar 

  734. Kruse R, Rütten A, Hosseiny-Malayeri HR, et al. “Second hit” in sebaceous tumors from Muir–Torre patients with germline mutations in MSH2: allele loss is not the preferred mode of inactivation. J Invest Dermatol. 2001;116:463.

    PubMed  CAS  Google Scholar 

  735. Kruse R, Rutten A, Schweiger N, et al. Frequency of microsatellite instability in unselected sebaceous gland neoplasias and hyperplasias. J Invest Dermatol. 2003;120:858.

    PubMed  CAS  Google Scholar 

  736. Orta L, Klimstra DS, Qin J, et al. Towards identification of hereditary DNA mismatch repair deficiency: sebaceous neoplasm warrants routine immunohistochemical screening regardless of patient’s age or other clinical characteristics. Am J Surg Pathol. 2009;33:934–44.

    PubMed  Google Scholar 

  737. Popnikolov NK, Gatalica Z, Colome-Grimmer MI, et al. Loss of mismatch repair proteins in sebaceous gland tumors. J Cutan Pathol. 2003;30:178.

    PubMed  Google Scholar 

  738. Ponti G, Venesio T, Losi L, et al. BRAF mutations in multiple sebaceous hyperplasias of patients belonging to MYH-associated polyposis pedigrees. J Invest Dermatol. 2007;127:1387–91.

    PubMed  CAS  Google Scholar 

  739. Goldberg M, Rummelt C, Foja S, Holbach LM, Ballhausen WG. Different genetic pathways in the development of periocular sebaceous gland carcinomas in presumptive Muir–Torre syndrome patients. Hum Mutat. 2006;27:155–62.

    PubMed  CAS  Google Scholar 

  740. Holbach LM, von Moller A, Decker C, Junemann AG, Rummelt-Hofmann C, Ballhausen WG. Loss of fragile histidine triad (FHIT) expression and microsatellite instability in periocular sebaceous gland carcinoma in patients with Muir–Torre syndrome. Am J Ophthalmol. 2002;134:147–8.

    PubMed  Google Scholar 

  741. Benjamin CL, Ananthaswamy HN. p53 and the pathogenesis of skin cancer. Toxicol Appl Pharmacol. 2007;224:241–8.

    PubMed  CAS  Google Scholar 

  742. Niemann C, Owens DM, Schettina P, Watt FM. Dual role of inactivating Lef1 mutations in epidermis: tumor promotion and specification of tumor type. Cancer Res. 2007;67:2916–21.

    PubMed  CAS  Google Scholar 

  743. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96:261–8.

    PubMed  CAS  Google Scholar 

  744. Ackerman AB, Abenoza P. Neoplasms with eccrine differentiation. Philadelphia: Lea and Febiger; 1990. p. 113–85.

    Google Scholar 

  745. Obaidat NA, Alsaad KO, Ghazarian D. Skin adnexal neoplasms-part 2 an approach to tumours of cutaneous sweat glands. J Clin Pathol. 2007;60(2):145–59.

    PubMed  Google Scholar 

  746. Ando K, Hashikawa Y, Nakashima M. Pure apocrine nevus. A study of light-microscopic and immunohistochemical features of a rare tumor. Am J Dermatopathol. 1991;13:71–6.

    PubMed  CAS  Google Scholar 

  747. Kim JH, Hur H, Lee CW, et al. Apocrine nevus. J Am Acad Dermatol. 1998;18:579–81.

    Google Scholar 

  748. Mehregan AH. Apocrine cystadenoma. Arch Dermatol. 1964;90:274–9.

    PubMed  CAS  Google Scholar 

  749. Milum EA. A solitary pigmented cyst of the face. Apocrine hidrocystoma. Arch Dermatol. 1991;127:572–5.

    PubMed  CAS  Google Scholar 

  750. Woodworth H, Dockerty MB, Wilson RB, et al. Papillary hidradenoma of the vulva: a clinicopathologic study of 69 cases. Am J Obstet Gynecol. 1971;110:501–8.

    PubMed  Google Scholar 

  751. Meeker JH, Neubecker RD, Helwig EB. Hidradenoma papilliferum. Am J Clin Pathol. 1962;37:182–95.

    PubMed  CAS  Google Scholar 

  752. Mammino JJ, Vidmar DA. Syringocystadenoma papilliferum: a review. Int J Dermatol. 1991;30:763–6.

    PubMed  CAS  Google Scholar 

  753. Yoon DH, Jang IG, Kim TY, et al. Syringocystadenoma papilliferum, basal cell carcinoma and trichilemmoma arising from nevus sebaceous of Jadassohn. Acta Derm Venereol. 1997;77:242–3.

    PubMed  CAS  Google Scholar 

  754. Umbert P, Winkelmann RK. Tubular apocrine adenoma. J Cutan Pathol. 1976;3:75–87.

    PubMed  CAS  Google Scholar 

  755. Kanitakis J, Hermier C, Thivolet J. Tubular apocrine adenoma: apropos of a case. Dermatologica. 1984;169:23–8.

    PubMed  CAS  Google Scholar 

  756. Toribio J, Zulaica A, Peteiro G. Tubular apocrine adenoma. J Cutan Pathol. 1987;14:114–7.

    PubMed  CAS  Google Scholar 

  757. Pinkus H, Rogin JR, Goldman P. Eccrine poroma. Tumors exhibiting features of the epidermal sweat duct unit. Arch Dermatol. 1956;74:511–21.

    Google Scholar 

  758. Hyman AB, Brownstein MH. Eccrine poroma: analysis of 45 new cases. Dermatologica. 1969;138:28–38.

    Google Scholar 

  759. Aoki K, Baba S, Nohara T, Suzuki H. Eccrine poroma. J Dermatol. 1980;7:263–9.

    PubMed  CAS  Google Scholar 

  760. Helwig EB. Eccrine acrospiroma. J Cutan Pathol. 1984;11:415–20.

    PubMed  CAS  Google Scholar 

  761. Abenoza P, Ackerman AB. Hidradenomas. In: Neoplasms with eccrine differentiation. Philadelphia: Lea and Febiger; 1990. p. 311–50.

    Google Scholar 

  762. Behboudi A, Winnes M, Gorunova L, et al. Clear cell hidradenoma of the skin-a third tumor type with a t(11;19) – associated TORC1-MAML2 gene fusion. Genes Chromosomes Cancer. 2005;43(2):202–5.

    PubMed  CAS  Google Scholar 

  763. Winkelmann RK, Wolff K. Solid-cystic hidradenoma of the skin. Clinical and histopathologic study. Arch Dermatol. 1968;97:651–61.

    PubMed  CAS  Google Scholar 

  764. Hashimoto K, Dibella RJ, Lever WF. Clear cell hidradenoma: histological, histochemical and electron microscopic studies. Arch Dermatol. 1967;96:18–38.

    PubMed  CAS  Google Scholar 

  765. Mambo NC. The significance of atypical nuclear changes in benign eccrine acrospiromas: a clinical and pathologic study of 18 cases. J Cutan Pathol. 1984;11:35–44.

    PubMed  CAS  Google Scholar 

  766. Nazarian RM, Kapur P, Rakheja D, et al. Atypical and malignant hidradenomas: a histological and immunohistochemical study. Mod Pathol. 2009;22:600–10.

    PubMed  CAS  Google Scholar 

  767. Winnes M, Mölne L, Suurküla M, et al. Frequent fusion of the CRTC1 and MAML2 genes in clear cell variants of cutaneous hidradenomas. Genes Chromosomes Cancer. 2007;46:559–63.

    PubMed  CAS  Google Scholar 

  768. Möller E, Stenman G, Mandahl N, et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol. 2008;215:78–86. http://www.ncbi.nlm.nih.gov/pubmed/18338330

    PubMed  Google Scholar 

  769. Welch J, Wells R, Kerr C. Ancell–Spiegler Cylindromas (turban tumors) and Brooke–Fordyce Trichoepitheliomas: evidence for a single genetic entity. J Med Genet. 1968;5:29–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  770. Ancell H. History of a remarkable case of tumours developed on the head and face; accompanied with a similar disease in the abdomen. Med Chir Trans. 1842;25:227–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  771. Bumgardner AC, Hsu S, Nunez-Gussman JK, Schwartz MR. Trichoepitheliomas and eccrine spiradenomas with spiradenoma/cylindroma overlap. Int J Dermatol. 2005;44(5):415–7.

    PubMed  Google Scholar 

  772. Burrows NP, Jones RR, Smith NP. The clinicopathological features of familial cylindromas and trichoepitheliomas (Brooke-Spiegler syndrome): a report of two families. Clin Exp Dermatol. 1992;17:332–6.

    PubMed  CAS  Google Scholar 

  773. Uede K, Yamamoto Y, Furukawa F. Brooke-Spiegler syndrome associated with cylindroma, trichoepithelioma, spiradenoma, and syringoma. J Dermatol. 2004;31(1):32–8.

    PubMed  Google Scholar 

  774. Biggs PJ, Wooster R, Ford D, Chapman P, Mangion J, Quirk Y, Easton DF, Burn J, Stratton MR. Familial cylindromatosis (turban tumour syndrome) gene localised to chromosome 16q12-q13: evidence for its role as a tumour suppressor gene. Nat Genet. 1995;11:441–3.

    PubMed  CAS  Google Scholar 

  775. Black PW, Toro JR. Update of cylindromatosis gene (CYLD) mutations in Brooke- Spiegler syndrome: novel insights into the role of deubiquitination in cell signaling. Hum Mutat. 2009;30(7):1025–36.

    Google Scholar 

  776. Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8:49–62.

    PubMed  CAS  Google Scholar 

  777. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature. 2003;424:797–801.

    PubMed  CAS  Google Scholar 

  778. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature. 2003;424:801–5.

    PubMed  CAS  Google Scholar 

  779. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature. 2003;424:793–6.

    PubMed  CAS  Google Scholar 

  780. Reiley W, Zhang M, Sun SC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem. 2004;279:55161–7.

    PubMed  CAS  Google Scholar 

  781. Henner MS, Shapiro PE, Ritter JH, et al. Solitary syringoma. Report of five cases and clinicopathologic comparison with microcystic adnexal carcinoma of the skin. Am J Dermatopathol. 1995;17:465–70.

    PubMed  CAS  Google Scholar 

  782. Young AW Jr, Herman EW, Tovell HM. Syringoma of the vulva: incidence, diagnosis, and cause of pruritus. Obstet Gynecol. 1980;55:515–8.

    PubMed  Google Scholar 

  783. Soler-Carrillo J, Estrach T, Mascaro JM. Eruptive syringoma: 27 new cases and review of the literature. J Eur Acad Dermatol Venereol. 2001;15:242–6.

    PubMed  CAS  Google Scholar 

  784. Furue M, Hori Y, Nakabayashi Y. Clear cell syringoma: association with diabetes mellitus. Am J Dermatopathol. 1984;6:131138.

    Google Scholar 

  785. Chen AH, Moreano EH, Houston B, et al. Chondroid syringoma of the head and neck: clinical management and literature review. Ear Nose Throat J. 1996;75:104–8.

    PubMed  CAS  Google Scholar 

  786. Mentzel T, Requena L, Kaddu S, et al. Cutaneous myoepithelial neoplasms: clinicopathologic and immunohistochemical study of 20 cases suggesting a continuous spectrum ranging from benign mixed tumor of the skin to cutaneous myoepithelioma and myoepithelial carcinoma. J Cutan Pathol. 2003;30:294–302.

    PubMed  Google Scholar 

  787. Liegl B, Leibl S, Okcu M, et al. Malignant transformation within benign adnexal skin tumours. Histopathology. 2004;45(2):162–70.

    PubMed  CAS  Google Scholar 

  788. Chiler K, Passaro D, Scheuller M, et al. Microcystic adnexal carcinoma: forty-eight cases, their treatment, and their outcome. Arch Dermatol. 2000;136(11):1355–9.

    Google Scholar 

  789. Hamsch C, Hartschuh W. Microcystic adnexal carcinoma – aggressive infiltrative tumor often with innocent clinical appearance. J Dtsch Deratol Ges. 2010;8(4):275–8.

    Google Scholar 

  790. Tse JY, Nguyen AT, Le LP, Hoang MP. Microcystic adnexal carcinoma versus desmoplastic trichoepithelioma: a comparative study. Am J Dermatopathol. 2013;35(1):50–5.

    PubMed  Google Scholar 

  791. Hoang MP, Dresser KA, Kapur P, et al. Microcystic adnexal carcinoma an immunohistochemical reappraisal. Mod Pathol. 2008;21(2):178–85.

    PubMed  CAS  Google Scholar 

  792. Snow SN, Reizner GT. Eccrine porocarcinoma of the face. J Am Acad Dermatol. 1992;27(2 pt 2):306–11.

    PubMed  CAS  Google Scholar 

  793. Maeda T, Mori H, Matsuo T, et al. Malignant eccrine poroma with multiple visceral metastases: report of a case with autopsy findings. J Cutan Pathol. 1996;23(6):566–70.

    PubMed  CAS  Google Scholar 

  794. Gouiaa N, Abbes K, Fakhfekh I, et al. Hidradenocarcinoma arising from pre-existing hidradenoma. Ann Dermatol Venereol. 2008;135(10):714–5.

    PubMed  CAS  Google Scholar 

  795. Kazakov DV, Ivan D, Kutzner H, et al. Cutaneous hidradenocarcinoma: a clinicopathological, immunohistochemical, and molecular biologic study of 14 cases, including Her2/neu gene expression/amplification, TF53 gene mutation analysis, and t(11;19) translocation. Am J Dermatopathol. 2009;31(3):236–47.

    PubMed  Google Scholar 

  796. Kao GF, Helvig EB, Graham JH. Aggressive digital papillary adenoma and adenocarcinoma. A clinicopathologic study of 57 patients, with histochemical, immunopathological and ultrastructural observations. J Cutan Pathol. 1987;14(3):129.

    PubMed  CAS  Google Scholar 

  797. Duke HW, Sherrod TT, Lupton GP. Aggressive digital papillary adenocarcinoma (aggressive digital papillary adenoma and adenocarcinoma revisited). Am J Surg Pathol. 2000;24:775.

    PubMed  CAS  Google Scholar 

  798. Kao GF, Helwig EB, Graham JH. Aggressive digital papillary adenoma and adenocarcinoma. A clinicopathological study of 57 patients, with histochemical, immunopathological, and ultrastructural observations. J Cutan Pathol. 1987;1(3):129–46.

    Google Scholar 

  799. Chen AH, Moreano EH, Houston B, et al. Chondroid syringoma of the head and neck: clinical management and literature review. ENT. 1996;75:104–8.

    PubMed  CAS  Google Scholar 

  800. Santa Cruz DJ. Sweat gland carcinomas: a comprehensive review. Semin Diagn Pathol. 1987;4:38–74.

    Google Scholar 

  801. Demirkesen C, Hoede N, Moll R. Epithelial markers and differentiation in adnexal neoplasms of the skin: an immunohistochemical study including individual cytokeratins. J Cutan Pathol. 1995;22(6):518–35.

    PubMed  CAS  Google Scholar 

  802. Kazakov DV, Suster S, LeBoit PE, et al. Mucinous carcinoma of the skin, primary, and secondary: a clinicopathologic study of 63 cases with emphasis on the morphologic spectrum of primary cutaneous forms: homologies with mucinous lesions in the breast. Am J Surg Pathol. 2005;29(6):764–82.

    PubMed  Google Scholar 

  803. Rollins-Raval M, Chivukula M, Tseng GC, et al. An immunohistochemical panel to differentiate metastatic breast carcinoma to skin from primary sweat gland carcinomas with a review of the literature. Arch Pathol Lab Med. 2011;135(8):975–83.

    PubMed  CAS  Google Scholar 

  804. Saga K. Histochemical and immunohistochemical markers for human eccrine and apocrine sweat glands: an aid for histopathologic differentiation of sweat gland tumors. J Investig Dermatol Symp Proc. 2001;6(1):49–53.

    PubMed  CAS  Google Scholar 

  805. Kariya Y, Moriya T, Suzuki T, et al. Sex steroid hormone receptors in human skin appendage and its neoplasms. Endocr J. 2005;52(3):317–25.

    PubMed  CAS  Google Scholar 

  806. Wallace ML, Longacre TA, Smoller BR. Estrogen and progesterone receptors and anti-gross cystic disease fluid protein 15 (BRST-2) fail to distinguish metastatic breast carcinoma from eccrine neoplasms. Mod Pathol. 1995;8(9):897–901.

    PubMed  CAS  Google Scholar 

  807. Lora V, Kanitakis J. CDX2 expression in cutaneous metastatic carcinomas and extramammary Paget’s Disease. Anticancer Res. 2009;29(12):5033–7.

    PubMed  CAS  Google Scholar 

  808. Warkel RL, Helwig EB. Apocrine gland adenoma and adenocarcinoma of the axilla. Arch Dermatol. 1978;114:198–203.

    PubMed  CAS  Google Scholar 

  809. Paties C, Taccagni GL, Papotti M, et al. Apocrine carcinoma of the skin: a clinicopathologic, immunocytochemical, and ultrastructural study. Cancer. 1993;71:375–81.

    PubMed  CAS  Google Scholar 

  810. MeyrickThomas RE, Lowe DG, Munro DD. Primary adenoid cystic carcinoma of the skin. Clin Exp Dermatol. 1987;12:378–80.

    CAS  Google Scholar 

  811. Cooper PH, Adelson GL, Holthaus WH. Primary cutaneous adenoid cystic carcinoma. Arch Dermatol. 1984;120:774–7.

    PubMed  CAS  Google Scholar 

  812. Naylor E, Sarkar P, Perlis CS, et al. Primary cutaneous adenoid cystic carcinoma. J Am Acad Dermatol. 2008;58:636–41.

    PubMed  Google Scholar 

  813. Fueston JC, Gloster HM, Mutasim DF. Primary cutaneous adenoid cystic carcinoma: a case report and literature review. Cutis. 2006;77:157–60.

    PubMed  Google Scholar 

  814. Eckert F, Pfau A, Landthaler M. Adenoid cystic sweat gland carcinoma. A clinicopathologic and immunohistochemical study. Hautarzt. 1994;45:318–23.

    PubMed  CAS  Google Scholar 

  815. North JP, McCalmont TH, Fehr A, van Zante A, Stenman G, LeBoit PE. Detection of MYB alterations and other immunohistochemical markers in primary cutaneous adenoid cystic carcinoma. Am J Surg Pathol. 2015;39(10):1347–56.

    PubMed  Google Scholar 

  816. Zembowicz A, Garcia CF, Tannous ZS, Mihm MC, Koerner F, Pilch BZ. Endocrine mucin-producing sweat gland carcinoma: twelve new cases suggest that it is a precursor of some invasive mucinous carcinomas. Am J Surg Pathol. 2005;29(10):1330–9.

    PubMed  Google Scholar 

  817. Dhaliwal CA, Torgersen A, Ross JJ, Ironside JW, Biswas A. Endocrine mucin-producing sweat gland carcinoma: report of two cases of an under-recognized malignant neoplasm and review of the literature. Am J Dermatopathol. 2013;35(1):117–24.

    PubMed  Google Scholar 

  818. Fernandez-Flores A, Cassarino DS. Endocrine mucin-producing sweat gland carcinoma: a study of three cases and CK8, CK18 and CD5/6 immunoexpression. J Cutan Pathol. 2015;42(8):578–86.

    PubMed  Google Scholar 

  819. Tannous ZS, Avram MM, Zembowicz A, et al. Treatment of synchronous mucinous carcinoma and endocrine mucin-producing sweat gland carcinoma with Mohs’ micrographic surgery. Dermatol Surg. 2005;31(3):364–7.

    PubMed  CAS  Google Scholar 

  820. Landman G, Farmer ER. Primary cutaneous mucoepidermoid carcinoma: report of a case. J Cutan Pathol. 1991;18:56–9.

    PubMed  CAS  Google Scholar 

  821. Yen A, Sanchez RL, Fearneyhough P, et al. Mucoepidermoid carcinoma with cutaneous presentation. J Am Acad Dermatol. 1997;37:340–2.

    PubMed  CAS  Google Scholar 

  822. Wayte DM, Helwig EB. Halo nevi. Cancer. 1968;22(1):69.

    PubMed  CAS  Google Scholar 

  823. Abbas O, Reddy K, Demierre MF, Blanchard RA, Mahalingam M. Epidermotropic metastatic mucoepidermoid carcinoma. Am J Dermatopathol. 2010;32(5):505–8.

    PubMed  Google Scholar 

  824. Lookingbill DP, Spangler N, Sexton FM. Skin involvement as the presenting sign of internal carcinoma. J Am Acad Dermatol. 1990;22:19–26.

    PubMed  CAS  Google Scholar 

  825. Sariya D, Ruth K, et al. Clinicopathologic correlation of cutaneous metastases: experience from a cancer center. Arch Dermatol. 2007;143:613–20.

    PubMed  Google Scholar 

  826. Reingold IM. Cutaneous metastases from internal carcinoma. Cancer. 1966;19:162–8.

    PubMed  CAS  Google Scholar 

  827. Brownstein MH, Helwig EB. Patterns of cutaneous metastases. Arch Dermatol. 1972;105:862–8.

    PubMed  CAS  Google Scholar 

  828. Lookingbill DP, Spangler N, Helm KF. Cutaneous metastases in patients with metastatic carcinoma: a retrospective study of 4020 patients. J Am Acad Dermatol. 1993;29:228–36.

    PubMed  CAS  Google Scholar 

  829. Krathen RA, Orengo IF, Rosen T. Cutaneous metastasis: a meta-analysis of data. South Med J. 2003;96(2):164–7.

    PubMed  Google Scholar 

  830. Kaufmann O, Fietze E, Mengs J, et al. Value of p63 and cytokeratin 5/6 as immunohistochemical markers for the differential diagnosis of poorly differentiated and undifferentiated carcinomas. Am J Clin Pathol. 2001;116:823–30.

    PubMed  CAS  Google Scholar 

  831. Rekhtman N, Ang DC, Sima CS, et al. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol. 2011;24:1348–59.

    PubMed  Google Scholar 

  832. Mahalingam M, Nguyen LP, Richards JE, et al. The diagnostic utility of immunohistochemistry in distinguishing primary skin adnexal carcinomas from metastatic adenocarcinoma to skin: an immunohistochemical reappraisal using cytokeratin 15, nestin, p63, D2-40, and Calretinin. Mod Pathol. 2010;23(5):713–9.

    PubMed  CAS  Google Scholar 

  833. Ivan D, Diwan HA, Prieto VG. Expression of p63 in primary cutaneous adnexal neoplasms and adenocarcinoma metastatic to the skin. Mod Pathol. 2005;18(1):137–42.

    PubMed  CAS  Google Scholar 

  834. Plaza JA, Ortega PF, Stockman DL, et al. Value of p63 and podoplanin (D2-40) immunoreactivity in the distinction between primary cutaneous tumors and adenocarcinomas metastatic to the skin: a clinicopathologic and immunohistochemical study of 79 cases. J Cutan Pathol. 2010;37(4):403–10.

    PubMed  Google Scholar 

  835. Qureshi HS, Ormsby AH, Lee MW, et al. The diagnostic utility of p63, CK5/6, CK7, and CK20 in distinguishing primary cutaneous adnexal neoplasms from metastatic carcinomas. J Cutan Pathol. 2004;31:145.

    PubMed  Google Scholar 

  836. Sariya D, Ruth K, Adams-McDonnell R, et al. Clinicopathologic correlation of cutaneous metastases. Experience from a cancer center. Arch Dermatol. 2007;143:613.

    PubMed  Google Scholar 

  837. Kanitakis J, Chouvet B. Expression of p63 in cutaneous metastases. Am J Clin Pathol. 2007;128(5):753–8.

    PubMed  Google Scholar 

  838. Ivan D, Nash J, Prieto V, et al. Use of p63 expression in distinguishing primary and metastatic cutaneous adnexal neoplasms from metastatic adenocarcinoma to skin. J Cutan Pathol. 2007;34:474.

    PubMed  Google Scholar 

  839. Liang H, Wu H, Giorgadze TA, et al. Podoplanin is a highly sensitive and specific marker to distinguish primary skin adnexal carcinomas from adenocarcinomas metastatic to skin. Am J Surg Pathol. 2007;31(2):304–10.

    PubMed  Google Scholar 

  840. Gonzalez-Guerra E, Kutzner H, Rutten A, et al. Immunohistochemical study of calretinin in normal skin and cutaneous adnexal proliferations. Am J Dermatopathol. 2012;34(5):491–505.

    PubMed  Google Scholar 

  841. Elder DE, Murphy GF. AFIP Atlas of tumor pathology. Melanocytic tumors of the skin. Silver Spring: ARP Press; 2010.

    Google Scholar 

  842. Bernard Ackerman A, Ragaz A. The lives of lesions. New York: Ardor Scribendi; 1984.

    Google Scholar 

  843. Hafner C, Stoehr R, van Oers JM, et al. The absence of BRAF, FGFR3, and PIK3CA mutations differentiates lentigo simplex from melanocytic nevus and solar lentigo. J Invest Dermatol. 2009;129(11):2730.

    PubMed  CAS  Google Scholar 

  844. Hafner C, Stoehr R, van Oers JM, et al. FGFR3 and PIK3CA mutations are involved in the molecular pathogenesis of solar lentigo. Br J Dermatol. 2009;160(3):546.

    PubMed  CAS  Google Scholar 

  845. Maize JC. Mucosal melanosis. Dermatol Clin. 1988;6(2):283.

    PubMed  CAS  Google Scholar 

  846. Shea CR, Prieto VG. Recent developments in the pathology of melanocytic neoplasia. Dermatol Clin. 1999;17(3):615.

    PubMed  CAS  Google Scholar 

  847. Shea CR, Vollmer RT, Prieto VG. Correlating architectural disorder and cytologic atypia in Clark (dysplastic) melanocytic nevi. Hum Pathol. 1999;30(5):500.

    PubMed  CAS  Google Scholar 

  848. Sueki H, Iwai M, Kato H, Nishida H. Immunohistochemical and electron microscopic observations of nevic corpuscle. J Cutan Pathol. 1984;11(2):140.

    PubMed  CAS  Google Scholar 

  849. Prieto VG, McNutt NS, Lugo J, Reed JA. Differential expression of the intermediate filament peripherin in cutaneous neural lesions and neurotized melanocytic nevi. Am J Surg Pathol. 1997;21(12):1450.

    PubMed  CAS  Google Scholar 

  850. Goette DK, Doty RD. Balloon cell nevus. Summary of the clinical and histologic characteristics. Arch Dermatol. 1978;114(1):109.

    PubMed  CAS  Google Scholar 

  851. Chan MP, Chan MM, Tahan SR. Melanocytic nevi in pregnancy: histologic features and Ki-67 proliferation index. J Cutan Pathol. 2010;37(8):843.

    PubMed  Google Scholar 

  852. Leleux TM, Prieto VG, Diwan AH. Aberrant expression of HMB-45 in traumatized melanocytic nevi. J Am Acad Dermatol. 2012;67(3):446.

    PubMed  CAS  Google Scholar 

  853. Cohen HJ, Minkin W, Frank SB. Nevus spilus. Arch Dermatol. 1970;102(4):433.

    PubMed  CAS  Google Scholar 

  854. Stewart DM, Altman J, Mehregan AH. Speckled lentiginous nevus. Arch Dermatol. 1978;114(6):895.

    PubMed  CAS  Google Scholar 

  855. Fernandez-Flores A. Eponyms, morphology, and pathogenesis of some less mentioned types of melanocytic nevi. Am J Dermatopathol. 2012;34(6):607.

    PubMed  Google Scholar 

  856. Simoes GA. Speckled zosteriform lentiginous nevus. J Am Acad Dermatol. 1981;4(2):236.

    PubMed  CAS  Google Scholar 

  857. Schaffer JV, Orlow SJ, Lazova R, Bolognia JL. Speckled lentiginous nevus--classic congenital melanocytic nevus hybrid not the result of “collision”. Arch Dermatol. 2001;137(12):1655.

    PubMed  CAS  Google Scholar 

  858. Marchesi L, Naldi L, Parma A, Locati F, Cainelli T. Agminate blue nevus combined with lentigo. A variant of speckled lentiginous nevus? Am J Dermatopathol. 1993;15(2):162.

    PubMed  CAS  Google Scholar 

  859. Misago N, Narisawa Y, Kohda H. A combination of speckled lentiginous nevus with patch-type blue nevus. J Dermatol. 1993;20(10):643.

    PubMed  CAS  Google Scholar 

  860. Aloi F, Tomasini C, Pippione M. Agminated Spitz nevi occurring within a congenital speckled lentiginous nevus. Am J Dermatopathol. 1995;17(6):594.

    PubMed  CAS  Google Scholar 

  861. Hofmann-Wellenhof R, Soyer HP, Smolle J, Kerl H. Spitz’s nevus arising on a nevus spilus. Dermatology (Basel, Switzerland). 1994;189(3):265.

    CAS  Google Scholar 

  862. Rhodes AR, Mihm MC Jr. Origin of cutaneous melanoma in a congenital dysplastic nevus spilus. Arch Dermatol. 1990;126(4):500.

    PubMed  CAS  Google Scholar 

  863. Stern JB, Haupt HM, Aaronson CM. Malignant melanoma in a speckled zosteriform lentiginous nevus. Int J Dermatol. 1990;29(8):583.

    PubMed  CAS  Google Scholar 

  864. Wagner RF Jr, Cottel WI. In situ malignant melanoma arising in a speckled lentiginous nevus. J Am Acad Dermatol. 1989;20(1):125.

    PubMed  Google Scholar 

  865. Schaffer JV, Orlow SJ, Lazova R, Bolognia JL. Speckled lentiginous nevus: within the spectrum of congenital melanocytic nevi. Arch Dermatol. 2001;137(2):172.

    PubMed  CAS  Google Scholar 

  866. Mooney MA, Barr RJ, Buxton MG. Halo nevus or halo phenomenon? A study of 142 cases. J Cutan Pathol. 1995;22(4):342.

    PubMed  CAS  Google Scholar 

  867. Tokura Y, Yamanaka K, Wakita H, et al. Halo congenital nevus undergoing spontaneous regression. Involvement of T-cell immunity in involution and presence of circulating anti-nevus cell IgM antibodies. Arch Dermatol. 1994;130(8):1036.

    PubMed  CAS  Google Scholar 

  868. Berman B, Shaieb AM, France DS, Altchek DD. Halo giant congenital melanocytic nevus: in vitro immunologic studies. J Am Acad Dermatol. 1988;19(5 Pt 2):954.

    PubMed  CAS  Google Scholar 

  869. Harvell JD, Meehan SA, LeBoit PE. Spitz’s nevi with halo reaction: a histopathologic study of 17 cases. J Cutan Pathol. 1997;24(10):611.

    PubMed  CAS  Google Scholar 

  870. Yasaka N, Furue M, Tamaki K. Histopathological evaluation of halo phenomenon in Spitz nevus. Am J Dermatopathol. 1995;17(5):484.

    PubMed  CAS  Google Scholar 

  871. Akasu R, From L, Kahn HJ. Characterization of the mononuclear infiltrate involved in regression of halo nevi. J Cutan Pathol. 1994;21(4):302.

    PubMed  CAS  Google Scholar 

  872. Moretti S, Spallanzani A, Pinzi C, Prignano F, Fabbri P. Fibrosis in regressing melanoma versus nonfibrosis in halo nevus upon melanocyte disappearance: could it be related to a different cytokine microenvironment? J Cutan Pathol. 2007;34(4):301.

    PubMed  Google Scholar 

  873. Brownstein MH, Kazam BB, Hashimoto K. Halo congenital nevus. Arch Dermatol. 1977;113(11):1572.

    PubMed  CAS  Google Scholar 

  874. Sotiriadis D, Lazaridou E, Patsatsi A, Kastanis A, Trigoni A, Devliotou-Panagiotidou D. Does halo nevus without halo exist? J Eur Acad Dermatol Venereol. 2006;20(10):1394.

    PubMed  CAS  Google Scholar 

  875. King R, Hayzen BA, Page RN, Googe PB, Zeagler D, Mihm MC Jr. Recurrent nevus phenomenon: a clinicopathologic study of 357 cases and histologic comparison with melanoma with regression. Mod Pathol. 2009;22(5):611.

    PubMed  CAS  Google Scholar 

  876. Park HK, Leonard DD, Arrington JH 3rd, Lund HZ. Recurrent melanocytic nevi: clinical and histologic review of 175 cases. J Am Acad Dermatol. 1987;17(2 Pt 1):285.

    PubMed  CAS  Google Scholar 

  877. Kornberg R, Ackerman AB. Pseudomelanoma: recurrent melanocytic nevus following partial surgical removal. Arch Dermatol. 1975;111(12):1588.

    PubMed  CAS  Google Scholar 

  878. Hoang MP, Prieto VG, Burchette JL, Shea CR. Recurrent melanocytic nevus: a histologic and immunohistochemical evaluation. J Cutan Pathol. 2001;28(8):400.

    PubMed  CAS  Google Scholar 

  879. Adeniran AJ, Prieto VG, Chon S, Duvic M, Diwan AH. Atypical histologic and immunohistochemical findings in melanocytic nevi after liquid nitrogen cryotherapy. J Am Acad Dermatol. 2009;61(2):341.

    PubMed  Google Scholar 

  880. Zembowicz A, Mihm MC. Dermal dendritic melanocytic proliferations: an update. Histopathology. 2004;45(5):433.

    PubMed  CAS  Google Scholar 

  881. Gonzalez-Campora R, Galera-Davidson H, Vazquez-Ramirez FJ, Diaz-Cano S. Blue nevus: classical types and new related entities. A differential diagnostic review. Pathol Res Pract. 1994;190(6):627.

    PubMed  CAS  Google Scholar 

  882. Zembowicz A, Carney JA, Mihm MC. Pigmented epithelioid melanocytoma: a low-grade melanocytic tumor with metastatic potential indistinguishable from animal-type melanoma and epithelioid blue nevus. Am J Surg Pathol. 2004;28(1):31.

    PubMed  Google Scholar 

  883. Harvell JD, White WL. Persistent and recurrent blue nevi. Am J Dermatopathol. 1999;21(6):506.

    PubMed  CAS  Google Scholar 

  884. Pulitzer DR, Martin PC, Cohen AP, Reed RJ. Histologic classification of the combined nevus. Analysis of the variable expression of melanocytic nevi. Am J Surg Pathol. 1991;15(12):1111.

    PubMed  CAS  Google Scholar 

  885. Leopold JG, Richards DB. The interrelationship of blue and common naevi. J Pathol Bacteriol. 1968;95(1):37.

    PubMed  CAS  Google Scholar 

  886. Kucher C, Zhang PJ, Pasha T, et al. Expression of Melan-A and Ki-67 in desmoplastic melanoma and desmoplastic nevi. Am J Dermatopathol. 2004;26(6):452.

    PubMed  Google Scholar 

  887. Sun J, Morton TH Jr, Gown AM. Antibody HMB-45 identifies the cells of blue nevi. An immunohistochemical study on paraffin sections. Am J Surg Pathol. 1990;14(8):748.

    PubMed  CAS  Google Scholar 

  888. Loghavi S, Curry JL, Torres-Cabala CA, et al. Melanoma arising in association with blue nevus: a clinical and pathologic study of 24 cases and comprehensive review of the literature. Mod Pathol. 2014;27(11):1468.

    PubMed  Google Scholar 

  889. Temple-Camp CR, Saxe N, King H. Benign and malignant cellular blue nevus. A clinicopathological study of 30 cases. Am J Dermatopathol. 1988;10(4):289.

    PubMed  CAS  Google Scholar 

  890. Maize JC Jr, McCalmont TH, Carlson JA, Busam KJ, Kutzner H, Bastian BC. Genomic analysis of blue nevi and related dermal melanocytic proliferations. Am J Surg Pathol. 2005;29(9):1214.

    PubMed  Google Scholar 

  891. Chan MP, Andea AA, Harms PW, et al. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus. Mod Pathol. 2016;29(3):227.

    PubMed  CAS  Google Scholar 

  892. Gammon B, Beilfuss B, Guitart J, Busam KJ, Gerami P. Fluorescence in situ hybridization for distinguishing cellular blue nevi from blue nevus-like melanoma. J Cutan Pathol. 2011;38(4):335.

    PubMed  Google Scholar 

  893. Franceschini D, Dinulos JG. Dermal melanocytosis and associated disorders. Curr Opin Pediatr. 2015;27(4):480.

    PubMed  CAS  Google Scholar 

  894. Hidano A, Kajima H, Ikeda S, Mizutani H, Miyasato H, Niimura M. Natural history of nevus of Ota. Arch Dermatol. 1967;95(2):187.

    PubMed  CAS  Google Scholar 

  895. Hori Y, Takayama O. Circumscribed dermal melanoses. Classification and histologic features. Dermatol Clin. 1988;6(2):315.

    PubMed  CAS  Google Scholar 

  896. Velez A, Fuente C, Belinchon I, Martin N, Furio V, Sanchez YE. Congenital segmental dermal melanocytosis in an adult. Arch Dermatol. 1992;128(4):521.

    PubMed  CAS  Google Scholar 

  897. Burge SM, Ralfs IG. Nevus of ito with sensory changes. Int J Dermatol. 1985;24(4):239.

    PubMed  CAS  Google Scholar 

  898. Scolyer RA, Thompson JF, Warnke K, McCarthy SW. Pigmented epithelioid melanocytoma. Am J Surg Pathol. 2004;28(8):1114.

    PubMed  Google Scholar 

  899. White S, Chen S. What is “pigmented epithelioid melanocytoma?”. Am J Surg Pathol. 2005;29(8):1118; author reply 1118.

    PubMed  Google Scholar 

  900. Mandal RV, Murali R, Lundquist KF, et al. Pigmented epithelioid melanocytoma: favorable outcome after 5-year follow-up. Am J Surg Pathol. 2009;33(12):1778.

    PubMed  Google Scholar 

  901. Spitz S. Melanomas of childhood. Am J Pathol. 1948;24(3):591.

    PubMed  PubMed Central  CAS  Google Scholar 

  902. Kernen JA, Ackerman LV. Spindle cell nevi and epithelioid cell nevi (so-called juvenile melanomas) in children and adults: a clinicopathological study of 27 cases. Cancer. 1960;13:612.

    PubMed  CAS  Google Scholar 

  903. Casso EM, Grin-Jorgensen CM, Grant-Kels JM. Spitz nevi. J Am Acad Dermatol. 1992;27(6 Pt 1):901.

    PubMed  CAS  Google Scholar 

  904. Paniago-Pereira C, Maize JC, Ackerman AB. Nevus of large spindle and/or epithelioid cells (Spitz’s nevus). Arch Dermatol. 1978;114(12):1811.

    PubMed  CAS  Google Scholar 

  905. Weedon D, Little JH. Spindle and epithelioid cell nevi in children and adults. A review of 211 cases of the Spitz nevus. Cancer. 1977;40(1):217.

    PubMed  CAS  Google Scholar 

  906. Schmoeckel C, Wildi G, Schafer T. Spitz nevus versus malignant melanoma: spitz nevi predominate on the thighs in patients younger than 40 years of age, melanomas on the trunk in patients 40 years of age or older. J Am Acad Dermatol. 2007;56(5):753.

    PubMed  Google Scholar 

  907. Barnhill RL. The spitzoid lesion: the importance of atypical variants and risk assessment. Am J Dermatopathol. 2006;28(1):75.

    PubMed  Google Scholar 

  908. Barnhill RL, Argenyi ZB, From L, et al. Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol. 1999;30(5):513.

    PubMed  CAS  Google Scholar 

  909. Plaza JA, De Stefano D, Suster S, et al. Intradermal spitz nevi: a rare subtype of spitz nevi analyzed in a clinicopathologic study of 74 cases. Am J Dermatopathol. 2014;36(4):283.

    PubMed  Google Scholar 

  910. Burg G, Kempf W, Hochli M, Huwyler T, Panizzon RG. ‘Tubular’ epithelioid cell nevus: a new variant of Spitz’s nevus. J Cutan Pathol. 1998;25(9):475.

    PubMed  CAS  Google Scholar 

  911. Ziemer M, Diaz-Cascajo C, Kohler G, Weyers W. “Tubular Spitz’s nevus” an artifact of fixation? J Cutan Pathol. 2000;27(10):500.

    PubMed  CAS  Google Scholar 

  912. Spatz A, Peterse S, Fletcher CD, Barnhill RL. Plexiform spitz nevus: an intradermal spitz nevus with plexiform growth pattern. Am J Dermatopathol. 1999;21(6):542.

    PubMed  CAS  Google Scholar 

  913. Hoang MP. Myxoid Spitz nevus. J Cutan Pathol. 2003;30(9):566.

    PubMed  Google Scholar 

  914. Barr RJ, Morales RV, Graham JH. Desmoplastic nevus: a distinct histologic variant of mixed spindle cell and epithelioid cell nevus. Cancer. 1980;46(3):557.

    PubMed  CAS  Google Scholar 

  915. Mackie RM, Doherty VR. The desmoplastic melanocytic naevus: a distinct histological entity. Histopathology. 1992;20(3):207.

    PubMed  CAS  Google Scholar 

  916. Diaz-Cascajo C, Borghi S, Weyers W. Angiomatoid Spitz nevus: a distinct variant of desmoplastic Spitz nevus with prominent vasculature. Am J Dermatopathol. 2000;22(2):135.

    PubMed  CAS  Google Scholar 

  917. Fabrizi G, Massi G. Angiomatoid Spitz naevus: a close simulator of regressing malignant melanoma. Br J Dermatol. 2001;145(5):845.

    PubMed  CAS  Google Scholar 

  918. Tetzlaff MT, Xu X, Elder DE, Elenitsas R. Angiomatoid Spitz nevus: a clinicopathological study of six cases and a review of the literature. J Cutan Pathol. 2009;36(4):471.

    PubMed  Google Scholar 

  919. Paradela S, Fonseca E, Pita S, et al. Spitzoid melanoma in children: clinicopathological study and application of immunohistochemistry as an adjunct diagnostic tool. J Cutan Pathol. 2009;36(7):740.

    PubMed  Google Scholar 

  920. Barnhill RL. The Spitzoid lesion: rethinking Spitz tumors, atypical variants, ‘Spitzoid melanoma’ and risk assessment. Mod Pathol. 2006;19 Suppl 2:S21.

    PubMed  Google Scholar 

  921. Cerroni L, Barnhill R, Elder D, et al. Melanocytic tumors of uncertain malignant potential: results of a tutorial held at the XXIX Symposium of the International Society of Dermatopathology in Graz, October 2008. Am J Surg Pathol. 2010;34(3):314.

    PubMed  Google Scholar 

  922. Gerami P, Busam K, Cochran A, et al. Histomorphologic assessment and interobserver diagnostic reproducibility of atypical spitzoid melanocytic neoplasms with long-term follow-up. Am J Surg Pathol. 2014;38(7):934.

    PubMed  Google Scholar 

  923. Lallas A, Kyrgidis A, Ferrara G, et al. Atypical Spitz tumours and sentinel lymph node biopsy: a systematic review. Lancet Oncol. 2014;15(4):e178.

    PubMed  Google Scholar 

  924. Mones JM, Ackerman AB. “Atypical” Spitz’s nevus, “malignant” Spitz’s nevus, and “metastasizing” Spitz’s nevus: a critique in historical perspective of three concepts flawed fatally. Am J Dermatopathol. 2004;26(4):310.

    PubMed  Google Scholar 

  925. Sau P, Graham JH, Helwig EB. Pigmented spindle cell nevus: a clinicopathologic analysis of ninety-five cases. J Am Acad Dermatol. 1993;28(4):565.

    PubMed  CAS  Google Scholar 

  926. Reed RJ, Ichinose H, Clark WH Jr, Mihm MC Jr. Common and uncommon melanocytic nevi and borderline melanomas. Semin Oncol. 1975;2(2):119.

    PubMed  CAS  Google Scholar 

  927. Sagebiel RW, Chinn EK, Egbert BM. Pigmented spindle cell nevus. Clinical and histologic review of 90 cases. Am J Surg Pathol. 1984;8(9):645.

    PubMed  CAS  Google Scholar 

  928. Smith NP. The pigmented spindle cell tumor of Reed: an underdiagnosed lesion. Semin Diagn Pathol. 1987;4(1):75.

    PubMed  CAS  Google Scholar 

  929. Ferrara G, Argenziano G, Soyer HP, et al. The spectrum of Spitz nevi: a clinicopathologic study of 83 cases. Arch Dermatol. 2005;141(11):1381.

    PubMed  Google Scholar 

  930. Jensen DE, Rauscher FJ 3rd. BAP1, a candidate tumor suppressor protein that interacts with BRCA1. Ann N Y Acad Sci. 1999;886:191.

    PubMed  CAS  Google Scholar 

  931. Wiesner T, Obenauf AC, Murali R, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018.

    PubMed  PubMed Central  CAS  Google Scholar 

  932. Wiesner T, Murali R, Fried I, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36(6):818.

    PubMed  PubMed Central  Google Scholar 

  933. Busam KJ, Sung J, Wiesner T, von Deimling A, Jungbluth A. Combined BRAF(V600E)-positive melanocytic lesions with large epithelioid cells lacking BAP1 expression and conventional nevomelanocytes. Am J Surg Pathol. 2013;37(2):193.

    PubMed  Google Scholar 

  934. Busam KJ, Wanna M, Wiesner T. Multiple epithelioid Spitz nevi or tumors with loss of BAP1 expression: a clue to a hereditary tumor syndrome. JAMA Dermatol. 2013;149(3):335.

    PubMed  Google Scholar 

  935. Vilain RE, McCarthy SW, Thompson JF, Scolyer RA. BAP1-inactivated spitzoid naevi. Am J Surg Pathol. 2015;39(5):722.

    PubMed  Google Scholar 

  936. Marusic Z, Buljan M, Busam KJ. Histomorphologic spectrum of BAP1 negative melanocytic neoplasms in a family with BAP1-associated cancer susceptibility syndrome. J Cutan Pathol. 2015;42(6):406.

    PubMed  Google Scholar 

  937. Wiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 2014;5:3116.

    PubMed  Google Scholar 

  938. Beimfohr C, Klugbauer S, Demidchik EP, Lengfelder E, Rabes HM. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int J Cancer. 1999;80(6):842.

    PubMed  CAS  Google Scholar 

  939. Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A. 1987;84(24):9270.

    PubMed  PubMed Central  CAS  Google Scholar 

  940. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94.

    PubMed  PubMed Central  CAS  Google Scholar 

  941. Ciampi R, Knauf JA, Rabes HM, Fagin JA, Nikiforov YE. BRAF kinase activation via chromosomal rearrangement in radiation-induced and sporadic thyroid cancer. Cell Cycle. 2005;4(4):547.

    PubMed  CAS  Google Scholar 

  942. Cin H, Meyer C, Herr R, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763.

    PubMed  CAS  Google Scholar 

  943. Haller F, Knopf J, Ackermann A, et al. Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol. 2016;238(5):700.

    PubMed  CAS  Google Scholar 

  944. Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med. 2010;16(7):793.

    PubMed  PubMed Central  CAS  Google Scholar 

  945. Park do Y, Choi C, Shin E, et al. NTRK1 fusions for the therapeutic intervention of Korean patients with colon cancer. Oncotarget. 2016;7(7):8399.

    PubMed  Google Scholar 

  946. Pierotti MA. Chromosomal rearrangements in thyroid carcinomas: a recombination or death dilemma. Cancer Lett. 2001;166(1):1.

    PubMed  CAS  Google Scholar 

  947. Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122(7):1097.

    PubMed  CAS  Google Scholar 

  948. Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190.

    PubMed  CAS  Google Scholar 

  949. Shaw AT, Costa D, Mino-Kenudson M, et al. Clinicopathologic features of EML4-ALK mutant lung cancer. J Clin Oncol. 2009;27(15 Suppl):11021.

    Google Scholar 

  950. Vaishnavi A, Capelletti M, Le AT, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469.

    PubMed  PubMed Central  CAS  Google Scholar 

  951. Williams ED, Abrosimov A, Bogdanova T, et al. Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. Br J Cancer. 2004;90(11):2219.

    PubMed  PubMed Central  CAS  Google Scholar 

  952. Zhao Z, Verma V, Zhang M. Anaplastic lymphoma kinase: role in cancer and therapy perspective. Cancer Biol Ther. 2015;16(12):1691.

    PubMed  PubMed Central  CAS  Google Scholar 

  953. Yeh I, Botton T, Talevich E, et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun. 2015;6:7174.

    PubMed  Google Scholar 

  954. Yeh I, Tee MK, Botton T, et al. NTRK3 kinase fusions in Spitz tumours. J Pathol. 2016;240(3):282.

    PubMed  PubMed Central  CAS  Google Scholar 

  955. Wiesner T, Kutzner H, Cerroni L, Mihm MC Jr, Busam KJ, Murali R. Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology. 2016;48(2):113.

    PubMed  CAS  Google Scholar 

  956. Botton T, Yeh I, Nelson T, et al. Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell Melanoma Res. 2013;26(6):845.

    PubMed  CAS  Google Scholar 

  957. Hutchinson KE, Lipson D, Stephens PJ, et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res. 2013;19(24):6696.

    PubMed  CAS  Google Scholar 

  958. Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963.

    PubMed  PubMed Central  Google Scholar 

  959. Solomon B, Wilner KD, Shaw AT. Current status of targeted therapy for anaplastic lymphoma kinase-rearranged non-small cell lung cancer. Clin Pharmacol Ther. 2014;95(1):15.

    PubMed  CAS  Google Scholar 

  960. Amin SM, Haugh AM, Lee CY, et al. A comparison of morphologic and molecular features of BRAF, ALK, and NTRK1 fusion spitzoid neoplasms. Am J Surg Pathol. 2017;41(4):491–8.

    PubMed  Google Scholar 

  961. Busam KJ, Kutzner H, Cerroni L, Wiesner T. Clinical and pathologic findings of Spitz nevi and atypical Spitz tumors with ALK fusions. Am J Surg Pathol. 2014;38(7):925.

    PubMed  PubMed Central  Google Scholar 

  962. Yeh I, de la Fouchardiere A, Pissaloux D, et al. Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am J Surg Pathol. 2015;39(5):581.

    PubMed  PubMed Central  Google Scholar 

  963. Kiuru M, Jungbluth A, Kutzner H, Wiesner T, Busam KJ. Spitz tumors: comparison of histological features in relationship to immunohistochemical staining for ALK and NTRK1. Int J Surg Pathol. 2016;24(3):200.

    PubMed  CAS  Google Scholar 

  964. Lee CY, Sholl LM, Zhang B, et al. Atypical spitzoid neoplasms in childhood: a molecular and outcome study. Am J Dermatopathol. 2017;39(3):181–6.

    PubMed  Google Scholar 

  965. Lee S, Barnhill RL, Dummer R, et al. TERT promoter mutations are predictive of aggressive clinical behavior in patients with spitzoid melanocytic neoplasms. Sci Rep. 2015;5:11200.

    PubMed  PubMed Central  CAS  Google Scholar 

  966. Gammon B, Beilfuss B, Guitart J, Gerami P. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe. Am J Surg Pathol. 2012;36(1):81.

    PubMed  Google Scholar 

  967. Al Dhaybi R, Agoumi M, Gagne I, McCuaig C, Powell J, Kokta V. p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. J Am Acad Dermatol. 2011;65(2):357.

    PubMed  Google Scholar 

  968. Mason A, Wititsuwannakul J, Klump VR, Lott J, Lazova R. Expression of p16 alone does not differentiate between Spitz nevi and Spitzoid melanoma. J Cutan Pathol. 2012;39(12):1062.

    PubMed  Google Scholar 

  969. Horst BA, Terrano D, Fang Y, Silvers DN, Busam KJ. 9p21 gene locus in Spitz nevi of older individuals: absence of cytogenetic and immunohistochemical findings associated with malignancy. Hum Pathol. 2013;44(12):2822.

    PubMed  CAS  Google Scholar 

  970. Anonymous. Diagnosis and treatment of early melanoma. NIH Consensus Development Conference. January 27–29, 1992. Consens Statement. 1992;10(1):1.

    Google Scholar 

  971. Halpern AC, Dt G, Elder DE, et al. Dysplastic nevi as risk markers of sporadic (nonfamilial) melanoma. A case-control study. Arch Dermatol. 1991;127(7):995.

    PubMed  CAS  Google Scholar 

  972. Halpern AC, Guerry D, Elder DE, Trock B, Synnestvedt M, Humphreys T. Natural history of dysplastic nevi. J Am Acad Dermatol. 1993;29(1):51.

    PubMed  CAS  Google Scholar 

  973. Tucker MA, Halpern A, Holly EA, et al. Clinically recognized dysplastic nevi. A central risk factor for cutaneous melanoma. JAMA. 1997;277(18):1439.

    PubMed  CAS  Google Scholar 

  974. Naeyaert JM, Brochez L. Clinical practice. Dysplastic nevi. N Engl J Med. 2003;349(23):2233.

    PubMed  CAS  Google Scholar 

  975. Torres-Cabala CA, Plaza JA, Diwan AH, Prieto VG. Severe architectural disorder is a potential pitfall in the diagnosis of small melanocytic lesions. J Cutan Pathol. 2010;37(8):860–5.

    PubMed  Google Scholar 

  976. Metcalf JS, Maize JC. Clark’s nevus. Semin Cutan Med Surg. 1999;18(1):43.

    PubMed  CAS  Google Scholar 

  977. Mooi WJ. The dysplastic naevus. J Clin Pathol. 1997;50(9):711.

    PubMed  PubMed Central  CAS  Google Scholar 

  978. Arumi-Uria M, McNutt NS, Finnerty B. Grading of atypia in nevi: correlation with melanoma risk. Mod Pathol. 2003;16(8):764.

    PubMed  Google Scholar 

  979. Culpepper KS, Granter SR, McKee PH. My approach to atypical melanocytic lesions. J Clin Pathol. 2004;57(11):1121.

    PubMed  PubMed Central  CAS  Google Scholar 

  980. Shors AR, Kim S, White E, et al. Dysplastic naevi with moderate to severe histological dysplasia: a risk factor for melanoma. Br J Dermatol. 2006;155(5):988.

    PubMed  CAS  Google Scholar 

  981. Rigel DS. Epidemiology of melanoma. Semin Cutan Med Surg. 2010;29(4):204.

    PubMed  CAS  Google Scholar 

  982. Mahul B, Amin FLG, Byrd DR, Brookland RK, Washington MK. AJCC cancer staging manual. 8th ed: Springer International Publishing; 2016.

    Google Scholar 

  983. Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199.

    PubMed  PubMed Central  Google Scholar 

  984. Ko JM, Fisher DE. A new era: melanoma genetics and therapeutics. J Pathol. 2011;223(2):241.

    PubMed  CAS  Google Scholar 

  985. Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993;74(1):205.

    PubMed  CAS  Google Scholar 

  986. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681.

    Google Scholar 

  987. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949.

    PubMed  CAS  Google Scholar 

  988. Hocker T, Tsao H. Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat. 2007;28(6):578.

    PubMed  CAS  Google Scholar 

  989. Beadling C, Heinrich MC, Warrick A, et al. Multiplex mutation screening by mass spectrometry evaluation of 820 cases from a personalized cancer medicine registry. J Mol Diagn. 2011;13(5):504.

    PubMed  PubMed Central  Google Scholar 

  990. Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19.

    PubMed  CAS  Google Scholar 

  991. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135.

    PubMed  CAS  Google Scholar 

  992. Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011;164(4):776.

    PubMed  CAS  Google Scholar 

  993. Ross AL, Sanchez MI, Grichnik JM. Molecular nevogenesis. Dermatol Res Pract. 2011;2011:463184.

    PubMed  PubMed Central  Google Scholar 

  994. Legius E, Marchuk DA, Collins FS, Glover TW. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumour suppressor gene hypothesis. Nat Genet. 1993;3(2):122.

    PubMed  CAS  Google Scholar 

  995. Wiesner T. Genomic rearrangements in unusual and atypical melanocytic neoplasms. JAMA dermatology. 2016;152(3):260.

    PubMed  Google Scholar 

  996. Wiesner T, Kiuru M, Scott SN, et al. NF1 mutations are common in desmoplastic melanoma. Am J Surg Pathol. 2015;39(10):1357.

    PubMed  PubMed Central  Google Scholar 

  997. Chen LL, Jaimes N, Barker CA, Busam KJ, Marghoob AA. Desmoplastic melanoma: a review. J Am Acad Dermatol. 2013;68(5):825.

    PubMed  Google Scholar 

  998. Jaimes N, Chen L, Dusza SW, et al. Clinical and dermoscopic characteristics of desmoplastic melanomas. JAMA Dermatol. 2013;149(4):413.

    PubMed  Google Scholar 

  999. Busam KJ. Cutaneous desmoplastic melanoma. Adv Anat Pathol. 2005;12(2):92.

    PubMed  Google Scholar 

  1000. Pawlik TM, Ross MI, Prieto VG, et al. Assessment of the role of sentinel lymph node biopsy for primary cutaneous desmoplastic melanoma. Cancer. 2006;106(4):900.

    PubMed  Google Scholar 

  1001. Allen AC, Spitz S. Malignant melanoma; a clinicopathological analysis of the criteria for diagnosis and prognosis. Cancer. 1953;6(1):1.

    PubMed  CAS  Google Scholar 

  1002. Granter SR, McKee PH, Calonje E, Mihm MC Jr, Busam K. Melanoma associated with blue nevus and melanoma mimicking cellular blue nevus: a clinicopathologic study of 10 cases on the spectrum of so-called ‘malignant blue nevus’. Am J Surg Pathol. 2001;25(3):316.

    PubMed  CAS  Google Scholar 

  1003. Zembowicz A, Phadke PA. Blue nevi and variants: an update. Arch Pathol Lab Med. 2011;135(3):327.

    PubMed  Google Scholar 

  1004. Magro CM, Crowson AN, Mihm MC. Unusual variants of malignant melanoma. Mod Pathol. 2006;19(Suppl 2):S41.

    PubMed  Google Scholar 

  1005. Avidor I, Kessler E. ‘Atypical’ blue nevus – a benign variant of cellular blue nevus. Presentation of three cases. Dermatologica. 1977;154(1):39.

    PubMed  CAS  Google Scholar 

  1006. Tran TA, Carlson JA, Basaca PC, Mihm MC. Cellular blue nevus with atypia (atypical cellular blue nevus): a clinicopathologic study of nine cases. J Cutan Pathol. 1998;25(5):252.

    PubMed  CAS  Google Scholar 

  1007. Barnhill RL, Argenyi Z, Berwick M, et al. Atypical cellular blue nevi (cellular blue nevi with atypical features): lack of consensus for diagnosis and distinction from cellular blue nevi and malignant melanoma (“malignant blue nevus”). Am J Surg Pathol. 2008;32(1):36.

    PubMed  Google Scholar 

  1008. Martin RC, Murali R, Scolyer RA, Fitzgerald P, Colman MH, Thompson JF. So-called “malignant blue nevus”: a clinicopathologic study of 23 patients. Cancer. 2009;115(13):2949.

    PubMed  Google Scholar 

  1009. Aloi F, Pich A, Pippione M. Malignant cellular blue nevus: a clinicopathological study of 6 cases. Dermatology. 1996;192(1):36.

    PubMed  CAS  Google Scholar 

  1010. Ariyanayagam-Baksh SM, Baksh FK, Finkelstein SD, Swalsky PA, Abernethy J, Barnes EL. Malignant blue nevus: a case report and molecular analysis. Am J Dermatopathol. 2003;25(1):21.

    PubMed  Google Scholar 

  1011. Boi S, Barbareschi M, Vigl E, Cristofolini M. Malignant blue nevus. Report of four new cases and review of the literature. Histol Histopathol. 1991;6(3):427.

    PubMed  CAS  Google Scholar 

  1012. Boni R, Panizzon R, Huch Boni RA, Steinert H, Dummer R. Malignant blue naevus with distant subcutaneous metastasis. Clin Exp Dermatol. 1996;21(6):427.

    PubMed  CAS  Google Scholar 

  1013. Calista D, Schianchi S, Landi C. Malignant blue nevus of the scalp. Int J Dermatol. 1998;37(2):126.

    PubMed  CAS  Google Scholar 

  1014. Connelly J, Smith JL Jr. Malignant blue nevus. Cancer. 1991;67(10):2653.

    PubMed  CAS  Google Scholar 

  1015. Dorsey CS, Montgomery H. Blue nevus and its distinction from Mongolian spot and the nevus of Ota. J Invest Dermatol. 1954;22(3):225.

    PubMed  CAS  Google Scholar 

  1016. Duteille F, Duport G, Larregue M, Neau A, Duriez P, Herve MC. Malignant blue nevus: three new cases and a review of the literature. Ann Plastic Surg. 1998;41(6):674.

    CAS  Google Scholar 

  1017. Fisher ER. Malignant blue nevus. AMA Arch Dermatol. 1956;74(3):227.

    CAS  Google Scholar 

  1018. Gartmann H, Lischka G. [Malignant blue nevus. (Malignant dermal melanocytoma)]. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete. 1972;23(4):175.

    Google Scholar 

  1019. Goldenhersh MA, Savin RC, Barnhill RL, Stenn KS. Malignant blue nevus. Case report and literature review. J Am Acad Dermatol. 1988;19(4):712.

    PubMed  CAS  Google Scholar 

  1020. Hagiwara T, Kaku T, Kobayashi H, Hirakawa T, Nakano H. Coexisting vulvar malignant melanoma and blue nevus of the cervix. Gynecol Oncol. 2005;99(2):519.

    PubMed  Google Scholar 

  1021. Held L, Metzler G, Eigentler TK, et al. Recurrent nodules in a periauricular plaque-type blue nevus with fatal outcome. J Cutan Pathol. 2012;39(12):1088.

    PubMed  Google Scholar 

  1022. Hendrickson MR, Ross JC. Neoplasms arising in congenital giant nevi: morphologic study of seven cases and a review of the literature. Am J Surg Pathol. 1981;5(2):109.

    PubMed  CAS  Google Scholar 

  1023. Hernandez FJ. Malignant blue nevus. A light and electron microscopic study. Arch Dermatol. 1973;107(5):741.

    PubMed  CAS  Google Scholar 

  1024. Hourihane DO. A malignant blue naevus, with metastasis to regional lymph node. Ir J Med Sci. 1971;140(4):169.

    PubMed  CAS  Google Scholar 

  1025. Hu W, Nelson JE, Mohney CA, Willen MD. Malignant melanoma arising in a pregnant African American woman with a congenital blue nevus. Dermatol Surg. 2004;30(12 Pt 2):1530.

    PubMed  Google Scholar 

  1026. Kato N, Tamura A, Yamanaka Y, Tanimura S, Minakawa H. Malignant blue nevus: case report of a Japanese man with a distant cutaneous metastasis. Am J Dermatopathol. 2007;29(1):88.

    PubMed  Google Scholar 

  1027. Kuhn A, Groth W, Gartmann H, Steigleder GK. Malignant blue nevus with metastases to the lung. Am J Dermatopathol. 1988;10(5):436.

    PubMed  CAS  Google Scholar 

  1028. Kwittken J, Negri L. Malignant blue nevus. Case report of a Negro woman. Arch Dermatol. 1966;94(1):64.

    PubMed  CAS  Google Scholar 

  1029. Lee HY, Na SY, Son YM, et al. A malignant melanoma associated with a blue nevus of the lip. Ann Dermatol. 2010;22(1):119.

    PubMed  PubMed Central  Google Scholar 

  1030. Lobo AZ, Martin RM, Belda W Jr, et al. Disseminated blue naevus and malignant blue naevus associated with excessive aromatase syndrome. Clin Exp Dermatol. 2008;33(5):591.

    PubMed  CAS  Google Scholar 

  1031. Mehregan DA, Gibson LE, Mehregan AH. Malignant blue nevus: a report of eight cases. J Dermatol Sci. 1992;4(3):185.

    PubMed  CAS  Google Scholar 

  1032. Mellone P, Bianchi A, Dragonetti E, Murace R, Persichetti P, Baldi A. Malignant melanoma associated with a blue naevus: a case report. Cases J. 2008;1(1):433.

    PubMed  PubMed Central  Google Scholar 

  1033. Merkow LP, Burt RC, Hayeslip DW, Newton FJ, Slifkin M, Pardo M. A cellular and malignant blue nevus: a light and electron microscopic study. Cancer. 1969;24(5):888.

    PubMed  CAS  Google Scholar 

  1034. Mishima Y. Cellular blue nevus. Melanogenic activity and malignant transformation. Arch Dermatol. 1970;101(1):104.

    PubMed  CAS  Google Scholar 

  1035. Modly C, Wood C, Horn T. Metastatic malignant melanoma arising from a common blue nevus in a patient with subacute cutaneous lupus erythematosus. Dermatologica. 1989;178(3):171.

    PubMed  CAS  Google Scholar 

  1036. North JP, Yeh I, McCalmont TH, LeBoit PE. Melanoma ex blue nevus: two cases resembling large plaque-type blue nevus with subcutaneous cellular nodules. J Cutan Pathol. 2012;39(12):1094.

    PubMed  Google Scholar 

  1037. Odashiro AN, Arthurs B, Pereira PR, Filho JP, Belfort E, Burnier MN Jr. Primary orbital melanoma associated with a blue nevus. Ophthalmic Plast Reconstr Surg. 2005;21(3):247.

    PubMed  Google Scholar 

  1038. Ozgur F, Akyurek M, Kayikcioglu A, Barista I, Gokoz A. Metastatic malignant blue nevus: a case report. Ann Plast Surg. 1997;39(4):411.

    PubMed  CAS  Google Scholar 

  1039. Parada D, Pena KB, Riu F. Coexisting malignant melanoma and blue nevus of the uterine cervix: an unusual combination. Case Reports in Pathology. 2012;2012:986542.

    PubMed  PubMed Central  Google Scholar 

  1040. Pathy AL, Helm TN, Elston D, Bergfeld WF, Tuthill RJ. Malignant melanoma arising in a blue nevus with features of pilar neurocristic hamartoma. J Cutan Pathol. 1993;20(5):459.

    PubMed  CAS  Google Scholar 

  1041. Pozo L, Diaz-Cano SJ. Malignant deep sclerosing blue naevus presenting as a subcutaneous soft tissue mass. Br J Dermatol. 2004;151(2):508.

    PubMed  CAS  Google Scholar 

  1042. Rubinstein N, Kopolovic J, Wexler MR, Peled IJ. Malignant blue nevus. J Dermatol Surg Oncol. 1985;11(9):921.

    PubMed  CAS  Google Scholar 

  1043. Sanada S, Higaki K, Torii Y, et al. Malignant melanoma arising in a plaque-type blue nevus. Pathol Int. 2012;62(11):749.

    PubMed  Google Scholar 

  1044. Schneider S, Bartels CG, Maza S, Sterry W. Detection of micrometastasis in a sentinel lymph node of a patient with malignant blue nevus: a case report. Dermatol Surg. 2006;32(8):1089.

    PubMed  CAS  Google Scholar 

  1045. Scott GA, Trepeta R. Clear cell sarcoma of tendons and aponeuroses and malignant blue nevus arising in prepubescent children. Report of two cases and review of the literature. Am J Dermatopathol. 1993;15(2):139.

    PubMed  CAS  Google Scholar 

  1046. Silverberg GD, Kadin ME, Dorfman RF, Hanbery JW, Prolo DJ. Invasion of the brain by a cellular blue nevus of the scalp. A case report with light and electron microscopic studies. Cancer. 1971;27(2):349.

    PubMed  CAS  Google Scholar 

  1047. Spatz A, Zimmermann U, Bachollet B, Pautier P, Michel G, Duvillard P. Malignant blue nevus of the vulva with late ovarian metastasis. Am J Dermatopathol. 1998;20(4):408.

    PubMed  CAS  Google Scholar 

  1048. Wetherington GM, Norins AL, Sadove AM. Locally invasive cellular blue nevus of the scalp. Plast Reconstr Surg. 1987;79(1):114.

    PubMed  CAS  Google Scholar 

  1049. Yeh I, Fang Y, Busam KJ. Melanoma arising in a large plaque-type blue nevus with subcutaneous cellular nodules. Am J Surg Pathol. 2012;36(8):1258.

    PubMed  Google Scholar 

  1050. Zyrek-Betts J, Micale M, Lineen A, et al. Malignant blue nevus with lymph node metastases. J Cutan Pathol. 2008;35(7):651.

    PubMed  Google Scholar 

  1051. English JC 3rd, McCollough ML, Grabski WJ. A pigmented scalp nodule: malignant blue nevus. Cutis; cutaneous medicine for the practitioner. 1996;58(1):40.

    PubMed  Google Scholar 

  1052. Reed RJ. Minimal deviation melanoma. In: Murphy GF, Kaufman N, editors. Pathobiology and recognition of malignant melanoma. Baltimore, MD: Williams and Wilkins; 1988.

    Google Scholar 

  1053. Idriss MH, Rizwan L, Sferuzza A, Wasserman E, Kazlouskaya V, Elston DM. Nevoid melanoma: a study of 43 cases with emphasis on growth pattern. J Am Acad Dermatol. 2015;73(5):836.

    PubMed  Google Scholar 

  1054. Zembowicz A, McCusker M, Chiarelli C, et al. Morphological analysis of nevoid melanoma: a study of 20 cases with a review of the literature. Am J Dermatopathol. 2001;23(3):167.

    PubMed  CAS  Google Scholar 

  1055. Sherrill AM, Crespo G, Prakash AV, Messina JL. Desmoplastic nevus: an entity distinct from spitz nevus and blue nevus. Am J Dermatopathol. 2011;33(1):35.

    PubMed  Google Scholar 

  1056. Harris GR, Shea CR, Horenstein MG, Reed JA, Burchette JL Jr, Prieto VG. Desmoplastic (sclerotic) nevus: an underrecognized entity that resembles dermatofibroma and desmoplastic melanoma. Am J Surg Pathol. 1999;23(7):786.

    PubMed  CAS  Google Scholar 

  1057. Prieto VG, Shea CR. Immunohistochemistry of melanocytic proliferations. Arch Pathol Lab Med. 2011;135(7):853.

    PubMed  Google Scholar 

  1058. Prieto VG, Shea CR. Use of immunohistochemistry in melanocytic lesions. J Cutan Pathol. 2008;35(Suppl 2):1.

    PubMed  Google Scholar 

  1059. Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One. 2009;4(5):e5623.

    PubMed  PubMed Central  Google Scholar 

  1060. Ohsie SJ, Sarantopoulos GP, Cochran AJ, Binder SW. Immunohistochemical characteristics of melanoma. J Cutan Pathol. 2008;35(5):433.

    PubMed  Google Scholar 

  1061. Romano RC, Carter JM, Folpe AL. Aberrant intermediate filament and synaptophysin expression is a frequent event in malignant melanoma: an immunohistochemical study of 73 cases. Mod Pathol. 2015;28(8):1033–42.

    PubMed  CAS  Google Scholar 

  1062. Robson A, Allen P, Hollowood K. S100 expression in cutaneous scars: a potential diagnostic pitfall in the diagnosis of desmoplastic melanoma. Histopathology. 2001;38(2):135.

    PubMed  CAS  Google Scholar 

  1063. Trejo O, Reed JA, Prieto VG. Atypical cells in human cutaneous re-excision scars for melanoma express p75NGFR, C56/N-CAM and GAP-43: evidence of early Schwann cell differentiation. J Cutan Pathol. 2002;29(7):397.

    PubMed  Google Scholar 

  1064. Gown AM, Vogel AM, Hoak D, Gough F, McNutt MA. Monoclonal antibodies specific for melanocytic tumors distinguish subpopulations of melanocytes. Am J Pathol. 1986;123(2):195.

    PubMed  PubMed Central  CAS  Google Scholar 

  1065. Adema GJ, de Boer AJ, Vogel AM, Loenen WA, Figdor CG. Molecular characterization of the melanocyte lineage-specific antigen gp100. J Biol Chem. 1994;269(31):20126.

    PubMed  CAS  Google Scholar 

  1066. Ordonez NG, Ji XL, Hickey RC. Comparison of HMB-45 monoclonal antibody and S-100 protein in the immunohistochemical diagnosis of melanoma. Am J Clin Pathol. 1988;90(4):385.

    PubMed  CAS  Google Scholar 

  1067. Wick MR, Swanson PE, Rocamora A. Recognition of malignant melanoma by monoclonal antibody HMB-45. An immunohistochemical study of 200 paraffin-embedded cutaneous tumors. J Cutan Pathol. 1988;15(4):201.

    PubMed  CAS  Google Scholar 

  1068. Fetsch PA, Fetsch JF, Marincola FM, Travis W, Batts KP, Abati A. Comparison of melanoma antigen recognized by T cells (MART-1) to HMB-45: additional evidence to support a common lineage for angiomyolipoma, lymphangiomyomatosis, and clear cell sugar tumor. Mod Pathol. 1998;11(8):699.

    PubMed  CAS  Google Scholar 

  1069. Argani P, Hawkins A, Griffin CA, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Pathol. 2001;158(6):2089.

    PubMed  PubMed Central  CAS  Google Scholar 

  1070. Deavers MT, Malpica A, Ordonez NG, Silva EG. Ovarian steroid cell tumors: an immunohistochemical study including a comparison of calretinin with inhibin. Int J Gynecol Pathol. 2003;22(2):162.

    PubMed  Google Scholar 

  1071. Ivan D, Prieto VG. Use of immunohistochemistry in the diagnosis of melanocytic lesions: applications and pitfalls. Future Oncol. 2010;6(7):1163.

    PubMed  Google Scholar 

  1072. Smoller BR, McNutt NS, Hsu A. HMB-45 recognizes stimulated melanocytes. J Cutan Pathol. 1989;16(2):49.

    PubMed  CAS  Google Scholar 

  1073. Bergman R, Dromi R, Trau H, Cohen I, Lichtig C. The pattern of HMB-45 antibody staining in compound Spitz nevi. Am J Dermatopathol. 1995;17(6):542.

    PubMed  CAS  Google Scholar 

  1074. Skelton HG 3rd, Smith KJ, Barrett TL, Lupton GP, Graham JH. HMB-45 staining in benign and malignant melanocytic lesions. A reflection of cellular activation. Am J Dermatopathol. 1991;13(6):543.

    PubMed  Google Scholar 

  1075. Fetsch PA, Marincola FM, Abati A. The new melanoma markers: MART-1 and Melan-A (the NIH experience). Am J Surg Pathol. 1999;23(5):607.

    PubMed  CAS  Google Scholar 

  1076. Orchard GE. Comparison of immunohistochemical labelling of melanocyte differentiation antibodies melan-A, tyrosinase and HMB 45 with NKIC3 and S100 protein in the evaluation of benign naevi and malignant melanoma. Histochem J. 2000;32(8):475.

    PubMed  CAS  Google Scholar 

  1077. Busam KJ, Chen YT, Old LJ, et al. Expression of melan-A (MART1) in benign melanocytic nevi and primary cutaneous malignant melanoma. Am J Surg Pathol. 1998;22(8):976.

    PubMed  CAS  Google Scholar 

  1078. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155.

    PubMed  CAS  Google Scholar 

  1079. Jungbluth AA, Iversen K, Coplan K, et al. T311 – an anti-tyrosinase monoclonal antibody for the detection of melanocytic lesions in paraffin embedded tissues. Pathol Res Pract. 2000;196(4):235.

    PubMed  CAS  Google Scholar 

  1080. Sato N, Suzuki S, Takimoto H, et al. Monoclonal antibody MAT-1 against human tyrosinase can detect melanogenic cells on formalin-fixed paraffin-embedded sections. Pigment Cell Res. 1996;9(2):72.

    PubMed  CAS  Google Scholar 

  1081. Hofbauer GF, Kamarashev J, Geertsen R, Boni R, Dummer R. Tyrosinase immunoreactivity in formalin-fixed, paraffin-embedded primary and metastatic melanoma: frequency and distribution. J Cutan Pathol. 1998;25(4):204.

    PubMed  CAS  Google Scholar 

  1082. Clarkson KS, Sturdgess IC, Molyneux AJ. The usefulness of tyrosinase in the immunohistochemical assessment of melanocytic lesions: a comparison of the novel T311 antibody (anti-tyrosinase) with S-100, HMB45, and A103 (anti-melan-A). J Clin Pathol. 2001;54(3):196.

    PubMed  PubMed Central  CAS  Google Scholar 

  1083. Ordonez NG. Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol. 2014;45(2):191.

    PubMed  CAS  Google Scholar 

  1084. Hemesath TJ, Steingrimsson E, McGill G, et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8(22):2770.

    PubMed  CAS  Google Scholar 

  1085. Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol. 1994;14(12):8058.

    PubMed  PubMed Central  CAS  Google Scholar 

  1086. Busam KJ, Iversen K, Coplan KC, Jungbluth AA. Analysis of microphthalmia transcription factor expression in normal tissues and tumors, and comparison of its expression with S-100 protein, gp100, and tyrosinase in desmoplastic malignant melanoma. Am J Surg Pathol. 2001;25(2):197.

    PubMed  CAS  Google Scholar 

  1087. Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am J Surg Pathol. 2001;25(2):205.

    PubMed  CAS  Google Scholar 

  1088. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739.

    PubMed  CAS  Google Scholar 

  1089. Fullen DR, Lowe L, Su LD. Antibody to S100a6 protein is a sensitive immunohistochemical marker for neurothekeoma. J Cutan Pathol. 2003;30(2):118.

    PubMed  Google Scholar 

  1090. Fernando SS, Johnson S, Bate J. Immunohistochemical analysis of cutaneous malignant melanoma: comparison of S-100 protein, HMB-45 monoclonal antibody and NKI/C3 monoclonal antibody. Pathology. 1994;26(1):16.

    PubMed  CAS  Google Scholar 

  1091. Cochran AJ, Wen DR. S-100 protein as a marker for melanocytic and other tumours. Pathology. 1985;17(2):340.

    PubMed  CAS  Google Scholar 

  1092. Edgerton ME, Roberts SA, Montone KT. Immunohistochemical performance of antibodies on previously frozen tissue. Appl Immunohistochem Mol Morphol. 2000;8(3):244.

    PubMed  CAS  Google Scholar 

  1093. Takahashi K, Isobe T, Ohtsuki Y, Akagi T, Sonobe H, Okuyama T. Immunohistochemical study on the distribution of alpha and beta subunits of S-100 protein in human neoplasm and normal tissues. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;45(4):385.

    PubMed  CAS  Google Scholar 

  1094. Blessing K, Sanders DS, Grant JJ. Comparison of immunohistochemical staining of the novel antibody melan-A with S100 protein and HMB-45 in malignant melanoma and melanoma variants. Histopathology. 1998;32(2):139.

    PubMed  CAS  Google Scholar 

  1095. Ludwig A, Rehberg S, Wegner M. Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 2004;556(1–3):236.

    PubMed  CAS  Google Scholar 

  1096. Kiefer JC. Back to basics: Sox genes. Dev Dyn. 2007;236(8):2356.

    PubMed  CAS  Google Scholar 

  1097. Bondurand N, Pingault V, Goerich DE, et al. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 2000;9(13):1907.

    PubMed  CAS  Google Scholar 

  1098. Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291.

    PubMed  Google Scholar 

  1099. Agnarsdottir M, Sooman L, Bolander A, et al. SOX10 expression in superficial spreading and nodular malignant melanomas. Melanoma Res. 2010;20(6):468.

    PubMed  CAS  Google Scholar 

  1100. Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20(5):445.

    PubMed  CAS  Google Scholar 

  1101. Ramos-Herberth FI, Karamchandani J, Kim J, Dadras SS. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. J Cutan Pathol. 2010;37(9):944.

    PubMed  Google Scholar 

  1102. Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506.

    PubMed  CAS  Google Scholar 

  1103. Jennings C, Kim J. Identification of nodal metastases in melanoma using sox-10. Am J Dermatopathol. 2011;33(5):474.

    PubMed  Google Scholar 

  1104. Tacha D, Qi W, Ra S, et al. A newly developed mouse monoclonal SOX10 antibody is a highly sensitive and specific marker for malignant melanoma, including spindle cell and desmoplastic melanomas. Arch Pathol Lab Med. 2015;139(4):530.

    PubMed  CAS  Google Scholar 

  1105. Ordonez NG. Value of SOX10 immunostaining in tumor diagnosis. Adv Anat Pathol. 2013;20(4):275.

    PubMed  CAS  Google Scholar 

  1106. Orchard G. Evaluation of melanocytic neoplasms: application of a pan-melanoma antibody cocktail. Br J Biomed Sci. 2002;59(4):196.

    PubMed  Google Scholar 

  1107. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710.

    PubMed  CAS  Google Scholar 

  1108. Kanter L, Blegen H, Wejde J, Lagerlof B, Larsson O. Utility of a proliferation marker in distinguishing between benign naevocellular naevi and naevocellular naevus-like lesions with malignant properties. Melanoma Res. 1995;5(5):345.

    PubMed  CAS  Google Scholar 

  1109. Smolle J, Soyer HP, Kerl H. Proliferative activity of cutaneous melanocytic tumors defined by Ki-67 monoclonal antibody. A quantitative immunohistochemical study. Am J Dermatopathol. 1989;11(4):301.

    PubMed  CAS  Google Scholar 

  1110. Rieger E, Hofmann-Wellenhof R, Soyer HP, et al. Comparison of proliferative activity as assessed by proliferating cell nuclear antigen (PCNA) and Ki-67 monoclonal antibodies in melanocytic skin lesions. A quantitative immunohistochemical study. J Cutan Pathol. 1993;20(3):229.

    PubMed  CAS  Google Scholar 

  1111. Puri PK, Valdes CL, Burchette JL, Grichnik JM, Turner JW, Selim MA. Accurate identification of proliferative index in melanocytic neoplasms with Melan-A/Ki-67 double stain. J Cutan Pathol. 2010;37(9):1010.

    PubMed  Google Scholar 

  1112. Nielsen PS, Riber-Hansen R, Steiniche T. Immunohistochemical double stains against Ki67/MART1 and HMB45/MITF: promising diagnostic tools in melanocytic lesions. Am J Dermatopathol. 2011;33(4):361.

    PubMed  Google Scholar 

  1113. Rudolph P, Schubert C, Schubert B, Parwaresch R. Proliferation marker Ki-S5 as a diagnostic tool in melanocytic lesions. J Am Acad Dermatol. 1997;37(2 Pt 1):169.

    PubMed  CAS  Google Scholar 

  1114. Vollmer RT. Use of Bayes rule and MIB-1 proliferation index to discriminate Spitz nevus from malignant melanoma. Am J Clin Pathol. 2004;122(4):499.

    PubMed  Google Scholar 

  1115. Nguyen TL, Theos A, Kelly DR, Busam K, Andea AA. Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: a diagnostic pitfall. Am J Dermatopathol. 2013;35(1):e16.

    PubMed  Google Scholar 

  1116. Nielsen PS, Spaun E, Riber-Hansen R, Torben S. Automated quantification of MART1-verified Ki-67 indices: useful diagnostic aid in melanocytic lesions. Hum Pathol. 2014;45(6):1153.

    PubMed  CAS  Google Scholar 

  1117. Juan G, Traganos F, James WM, et al. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry. 1998;32(2):71.

    PubMed  CAS  Google Scholar 

  1118. Schimming TT, Grabellus F, Roner M, et al. pHH3 immunostaining improves interobserver agreement of mitotic index in thin melanomas. Am J Dermatopathol. 2012;34(3):266.

    PubMed  Google Scholar 

  1119. Tetzlaff MT, Curry JL, Ivan D, et al. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma. Mod Pathol. 2013;26(9):1153.

    PubMed  CAS  Google Scholar 

  1120. Ladstein RG, Bachmann IM, Straume O, Akslen LA. Prognostic importance of the mitotic marker phosphohistone H3 in cutaneous nodular melanoma. J Invest Dermatol. 2012;132(4):1247.

    PubMed  CAS  Google Scholar 

  1121. Niakosari F, Kahn HJ, Marks A, From L. Detection of lymphatic invasion in primary melanoma with monoclonal antibody D2-40: a new selective immunohistochemical marker of lymphatic endothelium. Arch Dermatol. 2005;141(4):440.

    PubMed  Google Scholar 

  1122. Petersson F, Diwan AH, Ivan D, et al. Immunohistochemical detection of lymphovascular invasion with D2-40 in melanoma correlates with sentinel lymph node status, metastasis and survival. J Cutan Pathol. 2009;36(11):1157.

    PubMed  Google Scholar 

  1123. Tetzlaff MT, Torres-Cabala CA, Pattanaprichakul P, Rapini RP, Prieto VG, Curry JL. Emerging clinical applications of selected biomarkers in melanoma. Clin Cosmet Investig Dermatol. 2015;8:35.

    PubMed  PubMed Central  Google Scholar 

  1124. Newman PJ, Berndt MC, Gorski J, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247(4947):1219.

    PubMed  CAS  Google Scholar 

  1125. Sauter B, Foedinger D, Sterniczky B, Wolff K, Rappersberger K. Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem. 1998;46(2):165.

    PubMed  CAS  Google Scholar 

  1126. Massi D, Franchi A, Borgognoni L, Paglierani M, Reali UM, Santucci M. Tumor angiogenesis as a prognostic factor in thick cutaneous malignant melanoma. A quantitative morphologic analysis. Virchows Arch. 2002;440(1):22.

    PubMed  CAS  Google Scholar 

  1127. Wermker K, Brauckmann T, Klein M, Hassfeld S, Schulze HJ, Hallermann C. Prognostic value of S100/CD31 and S100/podoplanin double immunostaining in mucosal malignant melanoma of the head and neck. Head Neck. 2015;37(9):1368–74.

    PubMed  Google Scholar 

  1128. Nickoloff BJ. The human progenitor cell antigen (CD34) is localized on endothelial cells, dermal dendritic cells, and perifollicular cells in formalin-fixed normal skin, and on proliferating endothelial cells and stromal spindle-shaped cells in Kaposi’s sarcoma. Arch Dermatol. 1991;127(4):523.

    PubMed  CAS  Google Scholar 

  1129. Greaves MF, Brown J, Molgaard HV, et al. Molecular features of CD34: a hemopoietic progenitor cell-associated molecule. Leukemia. 1992;6 Suppl 1:31.

    PubMed  CAS  Google Scholar 

  1130. Rose AE, Christos PJ, Lackaye D, et al. Clinical relevance of detection of lymphovascular invasion in primary melanoma using endothelial markers D2-40 and CD34. Am J Surg Pathol. 2011;35(10):1441.

    PubMed  PubMed Central  Google Scholar 

  1131. Capper D, Berghoff AS, Magerle M, et al. Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol. 2012;123(2):223.

    PubMed  CAS  Google Scholar 

  1132. Long GV, Wilmott JS, Capper D, et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am J Surg Pathol. 2013;37(1):61.

    PubMed  Google Scholar 

  1133. Busam KJ, Hedvat C, Pulitzer M, von Deimling A, Jungbluth AA. Immunohistochemical analysis of BRAF(V600E) expression of primary and metastatic melanoma and comparison with mutation status and melanocyte differentiation antigens of metastatic lesions. Am J Surg Pathol. 2013;37(3):413.

    PubMed  Google Scholar 

  1134. Marin C, Beauchet A, Capper D, et al. Detection of BRAF p.V600E mutations in melanoma by immunohistochemistry has a good interobserver reproducibility. Arch Pathol Lab Med. 2014;138(1):71.

    PubMed  Google Scholar 

  1135. Feller JK, Yang S, Mahalingam M. Immunohistochemistry with a mutation-specific monoclonal antibody as a screening tool for the BRAFV600E mutational status in primary cutaneous malignant melanoma. Mod Pathol. 2013;26(3):414.

    PubMed  CAS  Google Scholar 

  1136. Tetzlaff MT, Pattanaprichakul P, Wargo J, et al. Utility of BRAF V600E immunohistochemical expression pattern as a surrogate of BRAF mutation status in 154 patients with advanced melanoma. Hum Pathol. 2015;46(8):1101–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  1137. Chen Q, Xia C, Deng Y, et al. Immunohistochemistry as a quick screening method for clinical detection of BRAF(V600E) mutation in melanoma patients. Tumour Biol. 2014;35(6):5727.

    PubMed  CAS  Google Scholar 

  1138. Beadling C, Jacobson-Dunlop E, Hodi FS, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821.

    PubMed  CAS  Google Scholar 

  1139. Satzger I, Schaefer T, Kuettler U, et al. Analysis of c-KIT expression and KIT gene mutation in human mucosal melanomas. Br J Cancer. 2008;99(12):2065.

    PubMed  PubMed Central  CAS  Google Scholar 

  1140. Carlson JA, Linette GP, Aplin A, Ng B, Slominski A. Melanocyte receptors: clinical implications and therapeutic relevance. Dermatol Clin. 2007;25(4):541.

    PubMed  PubMed Central  CAS  Google Scholar 

  1141. Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126(5):1102.

    PubMed  CAS  Google Scholar 

  1142. Grichnik JM, Burch JA, Burchette J, Shea CR. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol. 1998;111(2):233.

    PubMed  CAS  Google Scholar 

  1143. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340.

    PubMed  CAS  Google Scholar 

  1144. Torres-Cabala CA, Wang WL, Trent J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22(11):1446.

    PubMed  PubMed Central  CAS  Google Scholar 

  1145. Antonescu CR, Busam KJ, Francone TD, et al. L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer. 2007;121(2):257.

    PubMed  CAS  Google Scholar 

  1146. Kong Y, Si L, Zhu Y, et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin Cancer Res. 2011;17(7):1684.

    PubMed  CAS  Google Scholar 

  1147. Alessandrini L, Parrozzani R, Bertorelle R, et al. C-Kit SCF receptor (CD117) expression and KIT gene mutation in conjunctival pigmented lesions. Acta Ophthalmol. 2013;91(8):e641.

    PubMed  CAS  Google Scholar 

  1148. Santi R, Simi L, Fucci R, et al. KIT genetic alterations in anorectal melanomas. J Clin Pathol. 2014;68(2):130.

    PubMed  Google Scholar 

  1149. Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20(16):2149.

    PubMed  CAS  Google Scholar 

  1150. Goldstein AM, Chan M, Harland M, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818.

    PubMed  CAS  Google Scholar 

  1151. Lade-Keller J, Riber-Hansen R, Guldberg P, Schmidt H, Hamilton-Dutoit SJ, Steiniche T. Immunohistochemical analysis of molecular drivers in melanoma identifies p16 as an independent prognostic biomarker. J Clin Pathol. 2014;67(6):520.

    PubMed  Google Scholar 

  1152. Brochez L, Verhaeghe E, Grosshans E, et al. Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions. J Pathol. 2002;196(4):459.

    PubMed  Google Scholar 

  1153. Tetzlaff MT, Wang WL, Milless TL, et al. Ambiguous melanocytic tumors in a tertiary referral center: the contribution of fluorescence in situ hybridization (FISH) to conventional histopathologic and immunophenotypic analyses. Am J Surg Pathol. 2013;37(12):1783.

    PubMed  Google Scholar 

  1154. Zembowicz A, Yang SE, Kafanas A, Lyle SR. Correlation between histologic assessment and fluorescence in situ hybridization using MelanoSITE in evaluation of histologically ambiguous melanocytic lesions. Arch Pathol Lab Med. 2012;136(12):1571.

    PubMed  CAS  Google Scholar 

  1155. Al-Rohil RN, Curry JL, Torres-Cabala CA, et al. Proliferation indices correlate with diagnosis and metastasis in diagnostically challenging melanocytic tumors. Hum Pathol. 2016;53:73.

    PubMed  Google Scholar 

  1156. North JP, Garrido MC, Kolaitis NA, LeBoit PE, McCalmont TH, Bastian BC. Fluorescence in situ hybridization as an ancillary tool in the diagnosis of ambiguous melanocytic neoplasms: a review of 804 cases. Am J Surg Pathol. 2014;38(6):824.

    PubMed  Google Scholar 

  1157. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998;58(10):2170.

    PubMed  CAS  Google Scholar 

  1158. Bastian BC, Olshen AB, LeBoit PE, Pinkel D. Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol. 2003;163(5):1765.

    PubMed  PubMed Central  CAS  Google Scholar 

  1159. Bastian BC, Xiong J, Frieden IJ, et al. Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol. 2002;161(4):1163.

    PubMed  PubMed Central  CAS  Google Scholar 

  1160. Bauer J, Bastian BC. Distinguishing melanocytic nevi from melanoma by DNA copy number changes: comparative genomic hybridization as a research and diagnostic tool. Dermatol Ther. 2006;19(1):40.

    PubMed  Google Scholar 

  1161. Wiltshire RN, Duray P, Bittner ML, et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res. 1995;55(18):3954.

    PubMed  CAS  Google Scholar 

  1162. Gerami P, Jewell SS, Morrison LE, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33(8):1146.

    PubMed  Google Scholar 

  1163. Morey AL, Murali R, McCarthy SW, Mann GJ, Scolyer RA. Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology. 2009;41(4):383.

    PubMed  CAS  Google Scholar 

  1164. Busam KJ, Fang Y, Jhanwar SC, Pulitzer MP, Marr B, Abramson DH. Distinction of conjunctival melanocytic nevi from melanomas by fluorescence in situ hybridization. J Cutan Pathol. 2010;37(2):196.

    PubMed  Google Scholar 

  1165. Dalton SR, Gerami P, Kolaitis NA, et al. Use of fluorescence in situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol. 2010;34(2):231.

    PubMed  PubMed Central  Google Scholar 

  1166. Gerami P, Barnhill RL, Beilfuss BA, LeBoit P, Schneider P, Guitart J. Superficial melanocytic neoplasms with pagetoid melanocytosis: a study of interobserver concordance and correlation with FISH. Am J Surg Pathol. 2010;34(6):816.

    PubMed  Google Scholar 

  1167. Gerami P, Mafee M, Lurtsbarapa T, Guitart J, Haghighat Z, Newman M. Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. Arch Dermatol. 2010;146(3):273.

    PubMed  Google Scholar 

  1168. Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol. 2009;33(12):1783.

    PubMed  Google Scholar 

  1169. Newman MD, Mirzabeigi M, Gerami P. Chromosomal copy number changes supporting the classification of lentiginous junctional melanoma of the elderly as a subtype of melanoma. Mod Pathol. 2009;22(9):1258.

    PubMed  CAS  Google Scholar 

  1170. Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P. Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol. 2009;22(8):989.

    PubMed  CAS  Google Scholar 

  1171. Pouryazdanparast P, Haghighat Z, Beilfuss BA, Guitart J, Gerami P. Melanocytic nevi with an atypical epithelioid cell component: clinical, histopathologic, and fluorescence in situ hybridization findings. Am J Surg Pathol. 2011;35(9):1405.

    PubMed  Google Scholar 

  1172. Pouryazdanparast P, Newman M, Mafee M, Haghighat Z, Guitart J, Gerami P. Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol. 2009;33(9):1396.

    PubMed  Google Scholar 

  1173. Gaiser T, Kutzner H, Palmedo G, et al. Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol. 2010;23(3):413.

    PubMed  CAS  Google Scholar 

  1174. Vergier B, Prochazkova-Carlotti M, de la Fouchardiere A, et al. Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Mod Pathol. 2011;24(5):613.

    PubMed  CAS  Google Scholar 

  1175. McCalmont TH. Fillet of FISH. J Cutan Pathol. 2011;38(4):327.

    PubMed  Google Scholar 

  1176. Boone SL, Busam KJ, Marghoob AA, et al. Two cases of multiple spitz nevi: correlating clinical, histologic, and fluorescence in situ hybridization findings. Arch Dermatol. 2011;147(2):227.

    PubMed  Google Scholar 

  1177. Isaac AK, Lertsburapa T, Pathria Mundi J, Martini M, Guitart J, Gerami P. Polyploidy in spitz nevi: a not uncommon karyotypic abnormality identifiable by fluorescence in situ hybridization. Am J Dermatopathol. 2010;32(2):144.

    PubMed  Google Scholar 

  1178. Martin V, Banfi S, Bordoni A, Leoni-Parvex S, Mazzucchelli L. Presence of cytogenetic abnormalities in Spitz naevi: a diagnostic challenge for fluorescence in-situ hybridization analysis. Histopathology. 2012;60(2):336.

    PubMed  Google Scholar 

  1179. Pouryazdanparast P, Brenner A, Haghighat Z, Guitart J, Rademaker A, Gerami P. The role of 8q24 copy number gains and c-MYC expression in amelanotic cutaneous melanoma. Mod Pathol. 2012;25(9):1221.

    PubMed  CAS  Google Scholar 

  1180. Pouryazdanparast P, Cowen DP, Beilfuss BA, et al. Distinctive clinical and histologic features in cutaneous melanoma with copy number gains in 8q24. Am J Surg Pathol. 2012;36(2):253.

    PubMed  Google Scholar 

  1181. Gerami P, Li G, Pouryazdanparast P, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36(6):808.

    PubMed  Google Scholar 

  1182. Wang L, Rao M, Fang Y, et al. A genome-wide high-resolution array-CGH analysis of cutaneous melanoma and comparison of array-CGH to FISH in diagnostic evaluation. J Mol Diagn. 2013;15(5):581.

    PubMed  CAS  Google Scholar 

  1183. Gerami P, Cooper C, Bajaj S, et al. Outcomes of atypical spitz tumors with chromosomal copy number aberrations and conventional melanomas in children. Am J Surg Pathol. 2013;37(9):1387.

    PubMed  Google Scholar 

  1184. Gerami P, Jewell SS, Pouryazdanparast P, et al. Copy number gains in 11q13 and 8q24 [corrected] are highly linked to prognosis in cutaneous malignant melanoma. J Mol Diagn. 2011;13(3):352.

    PubMed  PubMed Central  CAS  Google Scholar 

  1185. North JP, Vetto JT, Murali R, White KP, White CR Jr, Bastian BC. Assessment of copy number status of chromosomes 6 and 11 by FISH provides independent prognostic information in primary melanoma. Am J Surg Pathol. 2011;35(8):1146.

    PubMed  PubMed Central  Google Scholar 

  1186. Yazdan P, Cooper C, Sholl LM, et al. Comparative analysis of atypical spitz tumors with heterozygous versus homozygous 9p21 deletions for clinical outcomes, histomorphology, BRAF mutation, and p16 expression. Am J Surg Pathol. 2014;38(5):638.

    PubMed  Google Scholar 

  1187. Gerami P, Scolyer RA, Xu X, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am J Surg Pathol. 2013;37(5):676.

    PubMed  Google Scholar 

  1188. Shen L, Cooper C, Bajaj S, et al. Atypical spitz tumors with 6q23 deletions: a clinical, histological, and molecular study. Am J Dermatopathol. 2013;35(8):804.

    PubMed  Google Scholar 

  1189. Horst BA, Fang Y, Silvers DN, Busam KJ. Chromosomal aberrations by 4-color fluorescence in situ hybridization not detected in Spitz nevi of older individuals. Arch Dermatol. 2012;148(10):1152.

    PubMed  Google Scholar 

  1190. Clarke LE, Flake DD 2nd, Busam K, et al. An independent validation of a gene expression signature to differentiate malignant melanoma from benign melanocytic nevi. Cancer. 2017;123(4):617.

    PubMed  CAS  Google Scholar 

  1191. Clarke LE, Warf MB, Flake DD 2nd, et al. Clinical validation of a gene expression signature that differentiates benign nevi from malignant melanoma. J Cutan Pathol. 2015;42(4):244.

    PubMed  PubMed Central  Google Scholar 

  1192. Minca EC, Al-Rohil RN, Wang M, et al. Comparison between melanoma gene expression score and fluorescence in situ hybridization for the classification of melanocytic lesions. Mod Pathol. 2016;29(8):832.

    PubMed  CAS  Google Scholar 

  1193. Balch CM, Gershenwald JE. Clinical value of the sentinel-node biopsy in primary cutaneous melanoma. N Engl J Med. 2014;370(7):663.

    PubMed  CAS  Google Scholar 

  1194. Gershenwald JE, Ross MI. Sentinel-lymph-node biopsy for cutaneous melanoma. N Engl J Med. 2011;364(18):1738.

    PubMed  CAS  Google Scholar 

  1195. Gershenwald JE, Soong SJ, Balch CM. 2010 TNM staging system for cutaneous melanoma...and beyond. Ann Surg Oncol. 2010;17(6):1475.

    PubMed  Google Scholar 

  1196. Carson KF, Wen DR, Li PX, et al. Nodal nevi and cutaneous melanomas. Am J Surg Pathol. 1996;20(7):834.

    PubMed  CAS  Google Scholar 

  1197. Biddle DA, Evans HL, Kemp BL, et al. Intraparenchymal nevus cell aggregates in lymph nodes: a possible diagnostic pitfall with malignant melanoma and carcinoma. Am J Surg Pathol. 2003;27(5):673.

    PubMed  Google Scholar 

  1198. Lohmann CM, Iversen K, Jungbluth AA, Berwick M, Busam KJ. Expression of melanocyte differentiation antigens and ki-67 in nodal nevi and comparison of ki-67 expression with metastatic melanoma. Am J Surg Pathol. 2002;26(10):1351.

    PubMed  Google Scholar 

  1199. Prieto VG. Use of frozen sections in the examination of sentinel lymph nodes in patients with melanoma. Semin Diagn Pathol. 2008;25(2):112.

    PubMed  Google Scholar 

  1200. Creager AJ, Shiver SA, Shen P, Geisinger KR, Levine EA. Intraoperative evaluation of sentinel lymph nodes for metastatic melanoma by imprint cytology. Cancer. 2002;94(11):3016.

    PubMed  Google Scholar 

  1201. Messina JL, Glass LF, Cruse CW, Berman C, Ku NK, Reintgen DS. Pathologic examination of the sentinel lymph node in malignant melanoma. Am J Surg Pathol. 1999;23(6):686.

    PubMed  CAS  Google Scholar 

  1202. Gershenwald JE, Colome MI, Lee JE, et al. Patterns of recurrence following a negative sentinel lymph node biopsy in 243 patients with stage I or II melanoma. J Clin Oncol. 1998;16(6):2253.

    PubMed  CAS  Google Scholar 

  1203. Batistatou A, Cook MG, Massi D, Group ESPDW. Histopathology report of cutaneous melanoma and sentinel lymph node in Europe: a web-based survey by the Dermatopathology Working Group of the European Society of Pathology. Virchows Arch. 2009;454(5):505.

    PubMed  Google Scholar 

  1204. Cochran AJ. Surgical pathology remains pivotal in the evaluation of ‘sentinel’ lymph nodes. Am J Surg Pathol. 1999;23(10):1169.

    PubMed  CAS  Google Scholar 

  1205. Prieto VG, Clark SH. Processing of sentinel lymph nodes for detection of metastatic melanoma. Ann Diagn Pathol. 2002;6(4):257.

    PubMed  Google Scholar 

  1206. Abrahamsen HN, Hamilton-Dutoit SJ, Larsen J, Steiniche T. Sentinel lymph nodes in malignant melanoma: extended histopathologic evaluation improves diagnostic precision. Cancer. 2004;100(8):1683.

    PubMed  Google Scholar 

  1207. Shidham VB, Qi D, Rao RN, et al. Improved immunohistochemical evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma with ‘MCW melanoma cocktail’ – a mixture of monoclonal antibodies to MART-1, Melan-A, and tyrosinase. BMC Cancer. 2003;3:15.

    PubMed  PubMed Central  Google Scholar 

  1208. Shidham VB, Qi DY, Acker S, et al. Evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma: higher diagnostic accuracy with Melan-A and MART-1 compared with S-100 protein and HMB-45. Am J Surg Pathol. 2001;25(8):1039.

    PubMed  CAS  Google Scholar 

  1209. Cascinelli N, Belli F, Santinami M, et al. Sentinel lymph node biopsy in cutaneous melanoma: the WHO Melanoma Program experience. Ann Surg Oncol. 2000;7(6):469.

    PubMed  CAS  Google Scholar 

  1210. Gershenwald JE, Thompson W, Mansfield PF, et al. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol. 1999;17(3):976.

    PubMed  CAS  Google Scholar 

  1211. Rousseau DL Jr, Ross MI, Johnson MM, et al. Revised American Joint Committee on Cancer staging criteria accurately predict sentinel lymph node positivity in clinically node-negative melanoma patients. Ann Surg Oncol. 2003;10(5):569.

    PubMed  Google Scholar 

  1212. Dewar DJ, Newell B, Green MA, Topping AP, Powell BW, Cook MG. The microanatomic location of metastatic melanoma in sentinel lymph nodes predicts nonsentinel lymph node involvement. J Clin Oncol. 2004;22(16):3345.

    PubMed  CAS  Google Scholar 

  1213. Debarbieux S, Duru G, Dalle S, Beatrix O, Balme B, Thomas L. Sentinel lymph node biopsy in melanoma: a micromorphometric study relating to prognosis and completion lymph node dissection. Br J Dermatol. 2007;157(1):58.

    PubMed  CAS  Google Scholar 

  1214. Frankel TL, Griffith KA, Lowe L, et al. Do micromorphometric features of metastatic deposits within sentinel nodes predict nonsentinel lymph node involvement in melanoma? Ann Surg Oncol. 2008;15(9):2403.

    PubMed  Google Scholar 

  1215. Gershenwald JE, Andtbacka RH, Prieto VG, et al. Microscopic tumor burden in sentinel lymph nodes predicts synchronous nonsentinel lymph node involvement in patients with melanoma. J Clin Oncol. 2008;26(26):4296.

    PubMed  PubMed Central  Google Scholar 

  1216. Guggenheim M, Dummer R, Jung FJ, et al. The influence of sentinel lymph node tumour burden on additional lymph node involvement and disease-free survival in cutaneous melanoma--a retrospective analysis of 392 cases. Br J Cancer. 2008;98(12):1922.

    PubMed  PubMed Central  CAS  Google Scholar 

  1217. Page AJ, Carlson GW, Delman KA, Murray D, Hestley A, Cohen C. Prediction of nonsentinel lymph node involvement in patients with a positive sentinel lymph node in malignant melanoma. Am Surg. 2007;73(7):674.

    PubMed  Google Scholar 

  1218. Sabel MS, Griffith K, Sondak VK, et al. Predictors of nonsentinel lymph node positivity in patients with a positive sentinel node for melanoma. J Am Coll Surg. 2005;201(1):37.

    PubMed  Google Scholar 

  1219. Rossi CR, De Salvo GL, Bonandini E, et al. Factors predictive of nonsentinel lymph node involvement and clinical outcome in melanoma patients with metastatic sentinel lymph node. Ann Surg Oncol. 2008;15(4):1202.

    PubMed  Google Scholar 

  1220. Satzger I, Volker B, Al Ghazal M, Meier A, Kapp A, Gutzmer R. Prognostic significance of histopathological parameters in sentinel nodes of melanoma patients. Histopathology. 2007;50(6):764.

    PubMed  CAS  Google Scholar 

  1221. van Akkooi AC, Bouwhuis MG, de Wilt JH, Kliffen M, Schmitz PI, Eggermont AM. Multivariable analysis comparing outcome after sentinel node biopsy or therapeutic lymph node dissection in patients with melanoma. Br J Surg. 2007;94(10):1293.

    PubMed  Google Scholar 

  1222. Wright BE, Scheri RP, Ye X, et al. Importance of sentinel lymph node biopsy in patients with thin melanoma. Arch Surg. 2008;143(9):892.

    PubMed  PubMed Central  Google Scholar 

  1223. Murali R, Desilva C, Thompson JF, Scolyer RA. Factors predicting recurrence and survival in sentinel lymph node-positive melanoma patients. Ann Surg. 2011;253(6):1155.

    PubMed  Google Scholar 

  1224. DA Prieto VG, Lazar AJ, Johnson MM, Shacherer C, Gershenwald J. Histologic quantification of tumor size in sentinel lymph node metastases correlates with prognosis in patients with cutaneous malignant melanoma. Mod Pathol. 2006;19:87A.

    Google Scholar 

  1225. Prieto VG. Sentinel lymph nodes in cutaneous melanoma. Surg Pathol Clin. 2009;2(3):553.

    PubMed  Google Scholar 

  1226. Rodriguez-Peralto JL, Riveiro-Falkenbach E, Carrillo R. Benign cutaneous neural tumors. Semin Diagn Pathol. 2013;30(1):45–57.

    PubMed  Google Scholar 

  1227. Umm-e-Kalsoom, et al. Genetic mapping of an autosomal recessive postaxial polydactyly type A to chromosome 13q13.3-q21.2 and screening of the candidate genes. Hum Genet. 2012;131(3):415–22.

    PubMed  CAS  Google Scholar 

  1228. Hosalkar HS, et al. Crossed polydactyly. J Postgrad Med. 1999;45(3):90–2.

    PubMed  CAS  Google Scholar 

  1229. Chung J, et al. Rudimentary polydactyly. J Dermatol. 1994;21(1):54–5.

    PubMed  CAS  Google Scholar 

  1230. Serrano Falcon C, et al. Amputation neuromas after neck surgery. Dermatol Online J. 2005;11(2):24.

    PubMed  Google Scholar 

  1231. Irie H, et al. Painful heterotopic pacinian corpuscle in the hand: a report of three cases. Hand Surg. 2011;16(1):81–5.

    PubMed  Google Scholar 

  1232. Requena L, et al. Epithelial sheath neuroma: a new entity. Am J Surg Pathol. 2000;24(2):190–6.

    PubMed  CAS  Google Scholar 

  1233. Beer TW. Reexcision perineural invasion: a mimic of malignancy. Am J Dermatopathol. 2006;28(5):423–5.

    PubMed  Google Scholar 

  1234. Gupta A, et al. Multiple neural fibrolipomas with macrodactyly. Indian J Dermatol. 2011;56(6):766–7.

    PubMed  PubMed Central  Google Scholar 

  1235. Cavallaro MC, et al. Imaging findings in a patient with fibrolipomatous hamartoma of the median nerve. Am J Roentgenol. 1993;161(4):837–8.

    CAS  Google Scholar 

  1236. Amadio PC, Reiman HM, Dobyns JH. Lipofibromatous hamartoma of nerve. J Hand Surg Am. 1988;13(1):67–75.

    PubMed  CAS  Google Scholar 

  1237. Reed RJ, Fine RM, Meltzer HD. Palisaded, encapsulated neuromas of the skin. Arch Dermatol. 1972;106(6):865–70.

    PubMed  CAS  Google Scholar 

  1238. Fletcher CD. Solitary circumscribed neuroma of the skin (so-called palisaded, encapsulated neuroma). A clinicopathologic and immunohistochemical study. Am J Surg Pathol. 1989;13(7):574–80.

    PubMed  CAS  Google Scholar 

  1239. Lazarus SS, Trombetta LD. Ultrastructural identification of a benign perineurial cell tumor. Cancer. 1978;41(5):1823–9.

    PubMed  CAS  Google Scholar 

  1240. Robson AM, Calonje E. Cutaneous perineurioma: a poorly recognized tumour often misdiagnosed as epithelioid histiocytoma. Histopathology. 2000;37(4):332–9.

    PubMed  CAS  Google Scholar 

  1241. Hornick JL, Fletcher CD. Soft tissue perineurioma: clinicopathologic analysis of 81 cases including those with atypical histologic features. Am J Surg Pathol. 2005;29(7):845–58.

    PubMed  Google Scholar 

  1242. Lasota J, et al. The neurofibromatosis type 2 gene is mutated in perineurial cell tumors – A molecular genetic study of eight cases. Am J Pathol. 2001;158(4):1223–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  1243. Hirose T, et al. Malignant peripheral nerve sheath tumor (MPNST) showing perineurial cell differentiation. Am J Surg Pathol. 1989;13(7):613–20.

    PubMed  CAS  Google Scholar 

  1244. Fetsch JF, Miettinen M. Sclerosing perineurioma: a clinicopathologic study of 19 cases of a distinctive soft tissue lesion with a predilection for the fingers and palms of young adults. Am J Surg Pathol. 1997;21(12):1433–42.

    PubMed  CAS  Google Scholar 

  1245. Laskin WB, Fetsch JF, Miettinen M. The “neurothekeoma”: immunohistochemical analysis distinguishes the true nerve sheath myxoma from its mimics. Hum Pathol. 2000;31(10):1230–41.

    PubMed  CAS  Google Scholar 

  1246. Fetsch JF, Laskin WB, Miettinen M. Nerve sheath myxoma: a clinicopathologic and immunohistochemical analysis of 57 morphologically distinctive, S-100 protein- and GFAP-positive, myxoid peripheral nerve sheath tumors with a predilection for the extremities and a high local recurrence rate. Am J Surg Pathol. 2005;29(12):1615–24.

    PubMed  Google Scholar 

  1247. Sheth S, et al. Differential gene expression profiles of neurothekeomas and nerve sheath myxomas by microarray analysis. Mod Pathol. 2011;24(3):343–54.

    PubMed  CAS  Google Scholar 

  1248. Scheithauer BW, Woodruff JM, Erlandson RA. Atlas of tumor pathology, 3rd series, fascicle 24. Washington, DC: Armed Forces Institute of Pathology; 1999. p. 423.

    Google Scholar 

  1249. Gleason BC, Nascimento AF. HMB-45 and Melan-A are useful in the differential diagnosis between granular cell tumor and malignant melanoma. Am J Dermatopathol. 2007;29(1):22–7.

    PubMed  Google Scholar 

  1250. Schoolmeester JK, Lastra RR. Granular cell tumors overexpress TFE3 without corollary gene rearrangement. Hum Pathol. 2015;46(8):1242–3.

    PubMed  CAS  Google Scholar 

  1251. Williams VC, et al. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123(1):124–33.

    PubMed  Google Scholar 

  1252. National Institutes of Health Consensus Development Conference Statement: neurofibromatosis. Bethesda, Md., USA, July 13–15, 1987. Neurofibromatosis. 1988;1(3):172–8.

    Google Scholar 

  1253. Rodriguez FJ, et al. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319.

    PubMed  PubMed Central  Google Scholar 

  1254. Jouhilahti EM, et al. The development of cutaneous neurofibromas. Am J Pathol. 2011;178(2):500–5.

    PubMed  PubMed Central  Google Scholar 

  1255. McCarron KF, Goldblum JR. Plexiform neurofibroma with and without associated malignant peripheral nerve sheath tumor: a clinicopathologic and immunohistochemical analysis of 54 cases. Mod Pathol. 1998;11(7):612–7.

    PubMed  CAS  Google Scholar 

  1256. Beert E, et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes Cancer. 2011;50(12):1021–32.

    PubMed  CAS  Google Scholar 

  1257. Peh WC, Shek TW, Yip DK. Magnetic resonance imaging of subcutaneous diffuse neurofibroma. Br J Radiol. 1997;70(839):1180–3.

    PubMed  CAS  Google Scholar 

  1258. Huang GS, et al. On the AJR viewbox. Diffuse neurofibroma of the arm: MR characteristics. AJR Am J Roentgenol. 2005;184(5):1711–2.

    PubMed  Google Scholar 

  1259. van Zuuren EJ, Posma AN. Diffuse neurofibroma on the lower back. J Am Acad Dermatol. 2003;48(6):938–40.

    PubMed  Google Scholar 

  1260. Ito H, et al. Giant pigmented tumor of the scalp – a diffuse neurofibroma or a congenital nevus showing neurofibromatous changes – immunohistochemical and electron-microscopic studies. Histopathology. 1988;13(2):181–9.

    PubMed  CAS  Google Scholar 

  1261. Fetsch JF, Michal M, Miettinen M. Pigmented (melanotic) neurofibroma: a clinicopathologic and immunohistochemical analysis of 19 lesions from 17 patients. Am J Surg Pathol. 2000;24(3):331–43.

    PubMed  CAS  Google Scholar 

  1262. Jokinen CH, Argenyi ZB. Atypical neurofibroma of the skin and subcutaneous tissue: clinicopathologic analysis of 11 cases. J Cutan Pathol. 2010;37(1):35–42.

    PubMed  Google Scholar 

  1263. Lin BT, Weiss LM, Medeiros LJ. Neurofibroma and cellular neurofibroma with atypia: a report of 14 tumors. Am J Surg Pathol. 1997;21(12):1443–9.

    PubMed  CAS  Google Scholar 

  1264. Chrysomali E, et al. Benign neural tumors of the oral cavity: a comparative immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(4):381–90.

    PubMed  CAS  Google Scholar 

  1265. MacCollin M, et al. A point mutation associated with a severe phenotype of neurofibromatosis 2. Ann Neurol. 1996;40(3):440–5.

    PubMed  CAS  Google Scholar 

  1266. Argenyi ZB. Recent developments in cutaneous neural neoplasms. J Cutan Pathol. 1993;20(2):97–108.

    PubMed  CAS  Google Scholar 

  1267. Louis DN, Ramesh V, Gusella JF. Neuropathology and molecular genetics of neurofibromatosis 2 and related tumors. Brain Pathol. 1995;5(2):163–72.

    PubMed  CAS  Google Scholar 

  1268. Zucman-Rossi J, et al. NF2 gene in neurofibromatosis type 2 patients. Hum Mol Genet. 1998;7(13):2095–101.

    PubMed  CAS  Google Scholar 

  1269. Argenyi ZB, Balogh K, Abraham AA. Degenerative (“ancient”) changes in benign cutaneous schwannoma. A light microscopic, histochemical and immunohistochemical study. J Cutan Pathol. 1993;20(2):148–53.

    PubMed  CAS  Google Scholar 

  1270. Kurtkaya-Yapicier O, Scheithauer B, Woodruff JM. The pathobiologic spectrum of Schwannomas. Histol Histopathol. 2003;18(3):925–34.

    PubMed  CAS  Google Scholar 

  1271. Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041–6.

    PubMed  CAS  Google Scholar 

  1272. Hart J, et al. Epithelioid Schwannomas: an analysis of 58 cases including atypical variants. Am J Surg Pathol. 2016;40(5):704–13.

    PubMed  Google Scholar 

  1273. Manganoni AM, et al. Cutaneous epithelioid malignant schwannoma: review of the literature and case report. J Plast Reconstr Aesthet Surg. 2009;62(9):e318–21.

    PubMed  Google Scholar 

  1274. Hornick JL, Bundock EA, Fletcher CDM. Hybrid schwannoma/perineurioma clinicopathologic analysis of 42 distinctive benign nerve sheath tumors. Am J Surg Pathol. 2009;33(10):1554–61.

    PubMed  Google Scholar 

  1275. Harder A, et al. Hybrid neurofibroma/schwannoma is overrepresented among schwannomatosis and neurofibromatosis patients. Am J Surg Pathol. 2012;36(5):702–9.

    PubMed  Google Scholar 

  1276. Feany MB, Anthony DC, Fletcher CD. Nerve sheath tumours with hybrid features of neurofibroma and schwannoma: a conceptual challenge. Histopathology. 1998;32(5):405–10.

    PubMed  CAS  Google Scholar 

  1277. Stucky CC, et al. Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann Surg Oncol. 2012;19(3):878–85.

    PubMed  Google Scholar 

  1278. Woodruff JM. Pathology of tumors of the peripheral nerve sheath in type 1 neurofibromatosis. Am J Med Genet. 1999;89(1):23–30.

    PubMed  CAS  Google Scholar 

  1279. Guo AT, et al. Malignant peripheral nerve sheath tumors: differentiation patterns and immunohistochemical features – a mini-review and our new findings. J Cancer. 2012;3:303–9.

    PubMed  PubMed Central  Google Scholar 

  1280. Allison KH, et al. Superficial malignant peripheral nerve sheath tumor: a rare and challenging diagnosis. Am J Clin Pathol. 2005;124(5):685–92.

    PubMed  Google Scholar 

  1281. Thomas C, et al. Cutaneous malignant peripheral nerve sheath tumors. J Cutan Pathol. 2009;36(8):896–900.

    PubMed  Google Scholar 

  1282. Evans HL. Sporadic superficial diffuse neurofibromas with repeated local recurrence over many years and a tendency toward malignant change: a report of 3 cases. Am J Surg Pathol. 2013;37(7):987–94.

    PubMed  Google Scholar 

  1283. Ducatman BS, et al. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer. 1986;57(10):2006–21.

    PubMed  CAS  Google Scholar 

  1284. Gachiani J, et al. Management of metastatic tumors invading the peripheral nervous system. Neurosurg Focus. 2007;22(6):E14.

    PubMed  Google Scholar 

  1285. Laskin WB, Weiss SW, Bratthauer GL. Epithelioid variant of malignant peripheral nerve sheath tumor (malignant epithelioid schwannoma). Am J Surg Pathol. 1991;15(12):1136–45.

    PubMed  CAS  Google Scholar 

  1286. McMenamin ME, Fletcher CD. Expanding the spectrum of malignant change in schwannomas: epithelioid malignant change, epithelioid malignant peripheral nerve sheath tumor, and epithelioid angiosarcoma: a study of 17 cases. Am J Surg Pathol. 2001;25(1):13–25.

    PubMed  CAS  Google Scholar 

  1287. Jo VY, Fletcher CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol. 2015;39(5):673–82.

    PubMed  Google Scholar 

  1288. Folpe AL. Selected topics in the pathology of epithelioid soft tissue tumors. Mod Pathol. 2014;27(Suppl 1):S64–79.

    PubMed  CAS  Google Scholar 

  1289. Reed RJ, Pulitzer DR. Tumors of neural tissue. In: Elder DE, editor. Lever’s histopathology of the skin. 10th ed. Philadelphenia: Wolters Kluwer Lippincott Williams & Wilkins; 2009. p. 1107–49.

    Google Scholar 

  1290. Weiss SW, Goldblum RJ. Malignant tumours of peripheral nerve. In: Enzinger and Weiss’s soft tissue tumours. 5th ed. Philadelphia, PA: Elsevier; 2001.

    Google Scholar 

  1291. Brekke HR, et al. Genomic changes in chromosomes 10, 16, and X in malignant peripheral nerve sheath tumors identify a high-risk patient group. J Clin Oncol. 2010;28(9):1573–82.

    PubMed  Google Scholar 

  1292. Sabah M, et al. Loss of p16(INK4A) expression is associated with allelic imbalance/loss of heterozygosity of chromosome 9p21 in microdissected malignant peripheral nerve sheath tumors. Appl Immunohistochem Mol Morphol. 2006;14(1):97–102.

    PubMed  Google Scholar 

  1293. Mantripragada KK, et al. Genome-wide high-resolution analysis of DNA copy number alterations in NF1-associated malignant peripheral nerve sheath tumors using 32K BAC array. Genes Chromosomes Cancer. 2009;48(10):897–907.

    PubMed  CAS  Google Scholar 

  1294. Soft tissue sarcoma (Chapter 44). In Amin MB, Edge SB, Greene FL, et al. eds. AJCC cancer staging manual, 8th ed. Switzerland, Springer, 2017: 531-536.

    Google Scholar 

  1295. Fletcher CD, Hogendoorn P, Mertens F, Bridge J. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.

    Google Scholar 

  1296. Rubin BP, Fletcher CDM, Inwards C, Montag AG, Peabody T, Qualman SJ, Rosenberg AE, Weiss S, Krausz T. Protocol for the examination of specimens from patients with soft tissue tumors of intermediate malignant potential, malignant soft tissue tumors, and benign/locally aggressive and malignant bone tumors. Arch Pathol Lab Med. 2006;130(11):1616–29.

    PubMed  Google Scholar 

  1297. Coindre J-M. Grading of soft tissue sarcomas: review and update. Arch Pathol Lab Med. 2006;130(10):1448–53.

    PubMed  Google Scholar 

  1298. Hodgson NC. Merkel cell carcinoma: changing incidence trends. J Surg Oncol. 2005;89:1–4.

    PubMed  Google Scholar 

  1299. Allen PJ, Bowne WB, Jaques DP, et al. Merkel cell carcinoma: prognosis and treatment of patients from a single institution. J Clin Oncol. 2005;23:2300–9.

    PubMed  Google Scholar 

  1300. Medina-Franco H, Urist MM, Fiveash J, et al. Multimodality treatment of Merkel cell carcinoma: case series and literature review of 1024 cases. Ann Surg Oncol. 2001;8:204–8.

    PubMed  CAS  Google Scholar 

  1301. Sibley RK, Dehner LP, Rosai J. Primary neuroendocrine (Merkel cell?) carcinoma of the skin. I. A clinicopathologic and ultrastructural study of 43 cases. Am J Surg Pathol. 1985;9:95–108.

    PubMed  CAS  Google Scholar 

  1302. Mauzo SH, Ferrarotto R, Bell D, Torres-Cabala CA, Tetzlaff MT, Prieto VG, Aung PP. Molecular characteristics and potential therapeutic targets in Merkel cell carcinoma. J Clin Pathol. 2016;69(5):382–90.

    PubMed  Google Scholar 

  1303. Sur M, AlArdati H, Ross C, et al. TdT expression in Merkel cell carcinoma: potential diagnostic pitfall with blastic hematological malignancies and expanded immunohistochemical analysis. Mod Pathol. 2007;20:1113–2.

    PubMed  CAS  Google Scholar 

  1304. Acebo E, Vidaurrazaga N, Varas C, et al. Merkel cell carcinoma: a clinicopathological study of 11 cases. J Eur Acad Dermatol Venereol. 2005;19:546–51.

    PubMed  CAS  Google Scholar 

  1305. Chan JK, Suster S, Wenig BM, et al. Cytokeratin 20 immunoreactivity distinguishes Merkel cell (primary cutaneous neuroendocrine) carcinomas and salivary gland small cell carcinomas from small cell carcinomas of various sites. Am J Surg Pathol. 1997;21:226–34.

    PubMed  CAS  Google Scholar 

  1306. Merkel cell carcinoma (Chapter 46). In Amin MB, Edge SB, Greene FL, et al. eds. AJCC cancer staging manual, 8th ed. Switzerland, Springer, 2017: 549–61.

    Google Scholar 

  1307. Liang E, Brower JV, Rice SR, et al. Merkel Cell carcinoma analysis of outcomes: a 30-year experience. PLoS One. 2015;10:e0129476.

    PubMed  PubMed Central  Google Scholar 

  1308. Chen MM, Roman SA, Sosa JA, et al. The role of adjuvant therapy in the management of head and neck merkel cell carcinoma: an analysis of 4815 patients. JAMA Otolaryngol Head Neck Surg. 2015;141:137–41.

    PubMed  Google Scholar 

  1309. Sihto H, Kukko H, Koljonen V, et al. Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst. 2009;101:938–45.

    PubMed  CAS  Google Scholar 

  1310. Sihto H, Kukko H, Koljonen V, et al. Merkel cell polyomavirus infection, large T antigen, retinoblastoma protein and outcome in Merkel cell carcinoma. Clin Cancer Res. 2011;17:4806–13.

    PubMed  CAS  Google Scholar 

  1311. Asioli S, Righi A, de Biase D, et al. Expression of p63 is the sole independent marker of aggressiveness in localised (stage I–II) Merkel cell carcinomas. Mod Pathol. 2011;24:1451–61.

    PubMed  CAS  Google Scholar 

  1312. Schrama D, Peitsch WK, Zapatka M, et al. Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J Invest Dermatol. 2011;131:1631–8.

    PubMed  CAS  Google Scholar 

  1313. Paulson KG, Carter JJ, Johnson LG, et al. Antibodies to Merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in Merkel cell carcinoma patients. Cancer Res. 2010;70:8388–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  1314. Touzé A, Le Bidre E, Laude H, et al. High levels of antibodies against Merkel cell polyomavirus identify a subset of patients with Merkel cell carcinoma with better clinical outcome. J Clin Oncol. 2011;29:1612–9.

    PubMed  Google Scholar 

  1315. Schwartz JL, Bichakjian CK, Lowe L, et al. Clinicopathologic features of primary Merkel cell carcinoma: a detailed descriptive analysis of a large contemporary cohort. Dermatol Surg. 2013;39:1009–16.

    PubMed  CAS  Google Scholar 

  1316. Bloom R, Amber KT, Nouri K. An increased risk of non-Hodgkin lymphoma and chronic lymphocytic leukemia in US patients with Merkel cell carcinoma versus Australian patients: a clinical clue to a different mechanism of pathogenesis? Australas J Dermatol. 2016;57(3):e114–6. Published Online First 1 Apr 2015.

    Google Scholar 

  1317. Rao P, Balzer BL, Lemos BD, Liegeois NJ, McNiff JM, Nghiem P, Prieto VG, Timothy Smith M, Smoller BR, Wick MR, Frishberg DP, for the Members of the Cancer Committee, College of American Pathologists. Protocol for the examination of specimens from patients with Merkel cell carcinoma of the skin. Arch Pathol Labor Med. 2010;134(3):341–4.

    Google Scholar 

  1318. Pastrana DV, Tolstov YL, Becker JC, Moore PS, Chang Y, Buck CB. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. PLoS Pathog. 2009 Sep;5(9):e1000578.

    PubMed  PubMed Central  Google Scholar 

  1319. Shao Q, Byrum SD, Moreland LE, Mackintosh SG, Kannan A, Lin Z, Morgan M, Stack BC Jr, Cornelius LA, Tackett AJ, Gao L. A proteomic study of human Merkel cell carcinoma. J Proteomics Bioinform. 2013;6:275–82.

    PubMed  PubMed Central  Google Scholar 

  1320. Swick BL, Srikantha R, Messingham KN. Specific analysis of KIT and PDGFR-alpha expression and mutational status in Merkel cell carcinoma. J Cutan Pathol. 2013;40(7):623–30.

    PubMed  Google Scholar 

  1321. Batinica M, Akgül B, Silling S, Mauch C, Zigrino P. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma. J Dermatol Sci. 2015;79(1):43–9.

    PubMed  CAS  Google Scholar 

  1322. Van Gele M, Leonard JH, Van Roy N, et al. Frequent allelic loss at 10q23 but low incidence of PTEN mutations in Merkel cell carcinoma. Int J Cancer. 2001;92:409–13.

    PubMed  Google Scholar 

  1323. Worda M, Sreevidya CS, Ananthaswamy HN, et al. T1796A BRAF mutation is absent in Merkel cell carcinoma. Br J Dermatol. 2005;153:229–32.

    PubMed  CAS  Google Scholar 

  1324. Houben R, Michel B, Vetter-Kauczok CS, et al. Absence of classical MAP kinase pathway signalling in Merkel cell carcinoma. J Invest Dermatol. 2006;126:1135–42.

    PubMed  CAS  Google Scholar 

  1325. Lill C, Schneider S, Ghanim B, et al. Expression of β-catenin and cyclin D1 in Merkel cell carcinomas of the head and neck. Wien Klin Wochenschr. 2013;125:501–7.

    PubMed  CAS  Google Scholar 

  1326. Feldmeyer L, Hudgens CW, Lyons GR, et al. Density, distribution, and composition of immune infiltrates correlate with survival in Merkel cell carcinoma. Clin Cancer Res. 2016;22(22):5553–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  1327. Requena L, Gutierrez J, Sanchez YE. Multiple sclerotic fibromas of the skin. A cutaneous marker of Cowden’s disease. J Cutan Pathol. 1992;19(4):346–51.

    PubMed  CAS  Google Scholar 

  1328. Chen TM, Purohit SK, Wang AR. Pleomorphic sclerotic fibroma: a case report and literature review. Am J Dermatopathol. 2002;24(1):54–8.

    PubMed  Google Scholar 

  1329. Ngeow J, Eng C. Germline PTEN mutation analysis for PTEN hamartoma tumor syndrome. Methods Mol Biol. 2016;1388:63–73.

    PubMed  CAS  Google Scholar 

  1330. Abdaljaleel MY, North JP. Sclerosing dermatofibrosarcoma protuberans shows significant overlap with sclerotic fibroma in both routine and immunohistochemical analysis: a potential diagnostic pitfall. Am J Dermatopathol. 2017;39(2):83–8.

    PubMed  Google Scholar 

  1331. Sohn IB, Hwang SM, Lee SH, Choi EH, Ahn SK. Dermatofibroma with sclerotic areas resembling a sclerotic fibroma of the skin. J Cutan Pathol. 2002;29(1):44–7.

    PubMed  Google Scholar 

  1332. Laskin WB, Fetsch JF, Michal M, Miettinen M. Sclerotic (fibroma-like) lipoma: a distinctive lipoma variant with a predilection for the distal extremities. Am J Dermatopathol. 2006;28(4):308–16.

    PubMed  Google Scholar 

  1333. Michal M, Fetsch JF, Hes O, Miettinen M. Nuchal-type fibroma: a clinicopathologic study of 52 cases. Cancer. 1999;85(1):156–63.

    PubMed  CAS  Google Scholar 

  1334. Diwan AH, Horenstein MG. Dermatofibrosarcoma protuberans association with nuchal-type fibroma. J Cutan Pathol. 2004;31(1):62–6.

    PubMed  Google Scholar 

  1335. Hernandez-Nunez A, Tardio JC, Castellano-Megias VM, Romero-Mate A, Borbujo J. Nuchal-type fibroma associated with lipoma and traumatic neuroma. J Eur Acad Dermatol Venereol. 2007;21(10):1420–2.

    PubMed  CAS  Google Scholar 

  1336. Zamecnik M, Michal M. Nuchal-type fibroma is positive for CD34 and CD99. Am J Surg Pathol. 2001;25(7):970.

    PubMed  CAS  Google Scholar 

  1337. Kucher C, McNiff JM. Epithelioid fibrous papule – a new variant. J Cutan Pathol. 2007;34(7):571–5.

    PubMed  Google Scholar 

  1338. Bansal C, Stewart D, Li A, Cockerell CJ. Histologic variants of fibrous papule. J Cutan Pathol. 2005;32(6):424–8.

    PubMed  Google Scholar 

  1339. Shea CR, Salob S, Reed JA, Lugo J, McNutt NS. CD34-reactive fibrous papule of the nose. J Am Acad Dermatol. 1996;35:342–5.

    PubMed  CAS  Google Scholar 

  1340. Chan JY, Wang KH, Fang CL, Chen WY. Fibrous papule of the face, similar to tuberous sclerosis complex-associated angiofibroma, shows activation of the mammalian target of rapamycin pathway: evidence for a novel therapeutic strategy? PLoS One. 2014;9(2):e89467.

    PubMed  PubMed Central  Google Scholar 

  1341. Nakamine H, Yamakawa M, Yoshino T, Fukumoto T, Enomoto Y, Matsumura I. Langerhans cell histiocytosis and Langerhans cell sarcoma: current understanding and differential diagnosis. J Clin Exp Hematop. 2016;56(2):109–18.

    PubMed  PubMed Central  Google Scholar 

  1342. Willman CL, McClain KL. An update on clonality, cytokines, and viral etiology in Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 1998;12(2):407–16.

    PubMed  CAS  Google Scholar 

  1343. Egeler RM, van Halteren AG, Hogendoorn PC, Laman JD, Leenen PJ. Langerhans cell histiocytosis: fascinating dynamics of the dendritic cell-macrophage lineage. Immunol Rev. 2010;234(1):213–32.

    PubMed  CAS  Google Scholar 

  1344. Badalian-Very G, Vergilio JA, Fleming M, Rollins BJ. Pathogenesis of Langerhans cell histiocytosis. Annu Rev Pathol. 2013;8:1–20.

    PubMed  CAS  Google Scholar 

  1345. Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–8.

    PubMed  CAS  Google Scholar 

  1346. Picarsic J, Jaffe R. Nosology and pathology of Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):799–823.

    PubMed  Google Scholar 

  1347. Haroche J, Abla O. Uncommon histiocytic disorders: Rosai-Dorfman, juvenile xanthogranuloma, and Erdheim-Chester disease. Hematology Am Soc Hematol Educ Program. 2015;2015:571–8.

    PubMed  Google Scholar 

  1348. Gutmann DH, Gurney JG, Shannon KM. Juvenile xanthogranuloma, neurofibromatosis 1, and juvenile chronic myeloid leukemia. Arch Dermatol. 1996;132(11):1390–1.

    PubMed  CAS  Google Scholar 

  1349. Caputo R, Grimalt R, Gelmetti C, Cottoni F. Unusual aspects of juvenile xanthogranuloma. J Am Acad Dermatol. 1993;29(5 Pt 2):868–70.

    PubMed  CAS  Google Scholar 

  1350. Fernandez-Flores A, Nicklaus I, Browne F, Colmenero I. Hemosiderotic juvenile xanthogranuloma. Am J Dermatopathol. 2017;39(10):773–5.

    PubMed  Google Scholar 

  1351. Techavichit P, Sosothikul D, Chaichana T, Teerapakpinyo C, Thorner PS, Shuangshoti S. BRAF V600E mutation in pediatric intracranial and cranial juvenile xanthogranuloma. Human Pathol. 2017;69:118–22.

    CAS  Google Scholar 

  1352. Luz FB, Gaspar TAP, Kalil-Gaspar N, Ramos-e-Silva M. Multicentric reticulohistiocytosis. J Eur Acad Dermatol Venereol. 2001;15(6):524–31.

    PubMed  CAS  Google Scholar 

  1353. Hemmady KD, Someshwar SS, Jerajani HR. Multiple cutaneous reticulohistiocytoma. Indian J Dermatol. 2016;61(1):121.

    PubMed  PubMed Central  Google Scholar 

  1354. Estrada-Veras JI, O’Brien KJ, Boyd LC, et al. The clinical spectrum of Erdheim-Chester disease: an observational cohort study. Blood Adv. 2017;1(6):357–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  1355. Liersch J, Carlson JA, Schaller J. Histopathological and clinical findings in cutaneous manifestation of Erdheim-Chester disease and Langerhans cell histiocytosis overlap syndrome associated with the BRAFV600E mutation. Am J Dermatopathol. 2017;39(7):493–503.

    PubMed  Google Scholar 

  1356. Cives M, Simone V, Rizzo FM, et al. Erdheim-Chester disease: a systematic review. Crit Rev Oncol Hematol. 2015;95(1):1–11.

    PubMed  Google Scholar 

  1357. Haroche J, Cohen-Aubart F, Rollins BJ, et al. Histiocytoses: emerging neoplasia behind inflammation. Lancet Oncol. 2017;18(2):e113–25.

    PubMed  Google Scholar 

  1358. Ballester LY, Cantu MD, Lim KP, et al. The use of BRAF V600E mutation-specific immunohistochemistry in pediatric Langerhans cell histiocytosis. Hematol Oncol. 2018;36(1):307–15.

    PubMed  CAS  Google Scholar 

  1359. Kroft SH. Rosai-Dorfman disease: familiar yet enigmatic. Semin Diagn Pathol. 2016;33(5):244–53.

    PubMed  Google Scholar 

  1360. Cangelosi JJ, Prieto VG, Ivan D. Cutaneous rosai-dorfman disease with increased number of eosinophils: coincidence or histologic variant? Arch Pathol Lab Med. 2011;135(12):1597–600.

    PubMed  Google Scholar 

  1361. Menon MP, Evbuomwan MO, Rosai J, Jaffe ES, Pittaluga S. A subset of Rosai-Dorfman disease cases show increased IgG4-positive plasma cells: another red herring or a true association with IgG4-related disease? Histopathology. 2014;64(3):455–9.

    PubMed  Google Scholar 

  1362. Vilanova JR, Flint A. The morphological variations of fibrous histiocytomas. J Cutan Pathol. 1974;1(4):155–64.

    PubMed  CAS  Google Scholar 

  1363. Meister P, Konrad E, Krauss F. Fibrous histiocytoma: a histological and statistical analysis of 155 cases. Pathol Res Pract. 1978;162(4):361–79.

    PubMed  CAS  Google Scholar 

  1364. Agarwal A, Gopinath A, Tetzlaff MT, Prieto VG. Phosphohistone-H3 and Ki67: useful markers in differentiating dermatofibroma from dermatofibrosarcoma protuberans and atypical fibrohistiocytic lesions. Am J Dermatopathol. 2017;39(7):504–7.

    PubMed  Google Scholar 

  1365. Tamada S, Ackerman AB. Dermatofibroma with monster cells. Am J Dermatopathol. 1987;9(5):380–7.

    PubMed  CAS  Google Scholar 

  1366. Horenstein MG, Prieto VG, Nuckols JD, Burchette JL, Shea CR. Indeterminate fibrohistiocytic lesions of the skin: is there a spectrum between dermatofibroma and dermatofibrosarcoma protuberans? Am J Surg Pathol. 2000;24(7):996–1003.

    PubMed  CAS  Google Scholar 

  1367. Doyle LA, Marino-Enriquez A, Fletcher CD, Hornick JL. ALK rearrangement and overexpression in epithelioid fibrous histiocytoma. Mod Pathol. 2015;28(7):904–12.

    PubMed  CAS  Google Scholar 

  1368. Snow SN, Gordon EM, Larson PO, Bagheri MM, Bentz ML, Sable DB. Dermatofibrosarcoma protuberans: a report on 29 patients treated by Mohs micrographic surgery with long-term follow-up and review of the literature. Cancer. 2004;101(1):28–38.

    PubMed  Google Scholar 

  1369. Chaput B, Filleron T, Le Guellec S, et al. Dermatofibrosarcoma protuberans: margins reduction using slow-Mohs micrographic surgery. Experience with 35 patients. Ann Chir Plast Esthet. 2014;59(4):219–25.

    PubMed  CAS  Google Scholar 

  1370. Erdem O, Wyatt AJ, Lin E, Wang X, Prieto VG. Dermatofibrosarcoma protuberans treated with wide local excision and followed at a cancer hospital: prognostic significance of clinicopathologic variables. Am J Dermatopathol. 2012;34(1):24–34.

    PubMed  Google Scholar 

  1371. Goldblum JR, Reith JD, Weiss SW. Sarcomas arising in dermatofibrosarcoma protuberans – a reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow up. Am J Surg Pathol. 2000;24(8):1125–30.

    PubMed  CAS  Google Scholar 

  1372. Zelger BW, Ofner D, Zelger BG. Atrophic variants of dermatofibroma and dermatofibrosarcoma protuberans. Histopathology. 1995;26(6):519–27.

    PubMed  CAS  Google Scholar 

  1373. Shmookler BM, Enzinger FM, Weiss SW. Giant cell fibroblastoma. A juvenile form of dermatofibrosarcoma protuberans. Cancer. 1989;64(10):2154–61.

    PubMed  CAS  Google Scholar 

  1374. Swaby MG, Evans HL, Fletcher CD, et al. Dermatofibrosarcoma protuberans with unusual sarcomatous transformation: a series of 4 cases with molecular confirmation. Am J Dermatopathol. 2011;33(4):354–60.

    PubMed  Google Scholar 

  1375. Diwan AH, Skelton HG 3rd, Horenstein MG, et al. Dermatofibrosarcoma protuberans and giant cell fibroblastoma exhibit CD99 positivity. J Cutan Pathol. 2008;35(7):647–50.

    PubMed  Google Scholar 

  1376. Patel KU, Szabo SS, Hernandez VS, et al. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Human Pathol. 2008;39(2):184–93.

    CAS  Google Scholar 

  1377. Agaimy A, Michal M, Giedl J, Hadravsky L, Michal M. Superficial acral fibromyxoma: clinicopathological, immunohistochemical, and molecular study of 11 cases highlighting frequent Rb1 loss/deletions. Human Pathol. 2017;60:192–8.

    CAS  Google Scholar 

  1378. Tardio JC, Butron M, Martin-Fragueiro LM. Superficial acral fibromyxoma: report of 4 cases with CD10 expression and lipomatous component, two previously underrecognized features. Am J Dermatopathol. 2008;30(5):431–5.

    PubMed  Google Scholar 

  1379. Zou Y, Billings SD. Myxoid cutaneous tumors: a review. J Cutan Pathol. 2016;43(10):903–18.

    PubMed  Google Scholar 

  1380. Jacobson-Dunlop E, White CR Jr, Mansoor A. Features of plexiform fibrohistiocytic tumor in skin punch biopsies: a retrospective study of 6 cases. Am J Dermatopathol. 2011;33(6):551–6.

    PubMed  Google Scholar 

  1381. Moosavi C, Jha P, Fanburg-Smith JC. An update on plexiform fibrohistiocytic tumor and addition of 66 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger, MD. Ann Diagn Pathol. 2007;11(5):313–9.

    PubMed  Google Scholar 

  1382. Sotelo-Avila C, Bale PM. Subdermal fibrous hamartoma of infancy: pathology of 40 cases and differential diagnosis. Pediatr Pathol. 1994;14(1):39–52.

    PubMed  CAS  Google Scholar 

  1383. Al-Ibraheemi A, Martinez A, Weiss SW, et al. Fibrous hamartoma of infancy: a clinicopathologic study of 145 cases, including 2 with sarcomatous features. Mod Pathol. 2017;30(4):474–85.

    PubMed  Google Scholar 

  1384. Park JY, Cohen C, Lopez D, Ramos E, Wagenfuehr J, Rakheja D. EGFR Exon 20 insertion/duplication mutations characterize fibrous hamartoma of infancy. Am J Surg Pathol. 2016;40(12):1713–8.

    PubMed  Google Scholar 

  1385. Laskin WB, Fetsch JF, Miettinen M. Myxoinflammatory fibroblastic sarcoma: a clinicopathologic analysis of 104 cases, with emphasis on predictors of outcome. Am J Surg Pathol. 2014;38(1):1–12.

    PubMed  PubMed Central  Google Scholar 

  1386. Meis-Kindblom JM, Kindblom LG. Acral myxoinflammatory fibroblastic sarcoma: a low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22(8):911–24.

    PubMed  CAS  Google Scholar 

  1387. Montgomery EA, Devaney KO, Giordano TJ, Weiss SW. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: a distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod Pathol. 1998;11(4):384–91.

    PubMed  CAS  Google Scholar 

  1388. Michal M. Inflammatory myxoid tumor of the soft parts with bizarre giant cells. Pathol Res Pract. 1998;194(8):529–33.

    PubMed  CAS  Google Scholar 

  1389. Boland JM, Folpe AL. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor, and myxoinflammatory fibroblastic sarcoma: related or not? Adv Anat Pathol. 2017;24(5):268–77.

    PubMed  CAS  Google Scholar 

  1390. Michal M, Kazakov DV, Hadravsky L, Kinkor Z, Kuroda N, Michal M. High-grade myxoinflammatory fibroblastic sarcoma: a report of 23 cases. Ann Diagn Pathol. 2015;19(3):157–63.

    PubMed  Google Scholar 

  1391. Torres-Cabala C, Curry JL, Chen SS, Miranda RN. Hematolymphoid proliferations of the skin. In: Prieto VG, editor. Precision molecular pathology of dermatologic diseases. 1st ed. New York: Springer; 2015. p. 3–36.

    Google Scholar 

  1392. LeBoit PEBG, Weedon D, Sarasin A. World Health Organization classification of skin tumours. Lyon: IARC Press; 2006.

    Google Scholar 

  1393. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    PubMed  PubMed Central  CAS  Google Scholar 

  1394. Bradford PT, Devesa SS, Anderson WF, Toro JR. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113(21):5064–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  1395. Pimpinelli N, Olsen EA, Santucci M, et al. Defining early mycosis fungoides. J Am Acad Dermatol. 2005;53(6):1053–63.

    PubMed  Google Scholar 

  1396. Zinzani PL, Ferreri AJ, Cerroni L. Mycosis fungoides. Crit Rev Oncol Hematol. 2008;65(2):172–82.

    PubMed  Google Scholar 

  1397. Gallardo F, Costa C, Bellosillo B, et al. Lymphomatoid papulosis associated with mycosis fungoides: clinicopathological and molecular studies of 12 cases. Acta Derm Venereol. 2004;84(6):463–8.

    PubMed  Google Scholar 

  1398. Murphy M, Fullen D, Carlson JA. Low CD7 expression in benign and malignant cutaneous lymphocytic infiltrates: experience with an antibody reactive with paraffin-embedded tissue. Am J Dermatopathol. 2002;24(1):6–16.

    PubMed  Google Scholar 

  1399. Wood GS, Greenberg HL. Diagnosis, staging, and monitoring of cutaneous T-cell lymphoma. Dermatol Ther. 2003;16(4):269–75.

    PubMed  Google Scholar 

  1400. Tournier E, Laurent C, Thomas M, et al. Double-positive CD4/CD8 mycosis fungoides: a rarely reported immunohistochemical profile. J Cutan Pathol. 2014;41(1):58–62.

    PubMed  Google Scholar 

  1401. Hodak E, David M, Maron L, Aviram A, Kaganovsky E, Feinmesser M. CD4/CD8 double-negative epidermotropic cutaneous T-cell lymphoma: an immunohistochemical variant of mycosis fungoides. J Am Acad Dermatol. 2006;55(2):276–84.

    PubMed  Google Scholar 

  1402. Rodriguez-Pinilla SM, Ortiz-Romero PL, Monsalvez V, et al. TCR-gamma expression in primary cutaneous T-cell lymphomas. Am J Surg Pathol. 2013;37(3):375–84.

    PubMed  Google Scholar 

  1403. Massone C, Crisman G, Kerl H, Cerroni L. The prognosis of early mycosis fungoides is not influenced by phenotype and T-cell clonality. Br J Dermatol. 2008;159(4):881–6.

    PubMed  CAS  Google Scholar 

  1404. Ben-Amitai D, Michael D, Feinmesser M, Hodak E. Juvenile mycosis fungoides diagnosed before 18 years of age. Acta Derm Venereol. 2003;83(6):451–6.

    PubMed  Google Scholar 

  1405. Aung PP, Climent F, Muzzafar T, et al. Immunophenotypic shift of CD4 and CD8 antigen expression in primary cutaneous T-cell lymphomas: a clinicopathologic study of three cases. J Cutan Pathol. 2014;41(1):51–7.

    PubMed  Google Scholar 

  1406. Fauconneau A, Pham-Ledard A, Cappellen D, et al. Assessment of diagnostic criteria between primary cutaneous anaplastic large-cell lymphoma and CD30-rich transformed mycosis fungoides; a study of 66 cases. Br J Dermatol. 2015;172(6):1547–54.

    PubMed  CAS  Google Scholar 

  1407. Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications. J Am Acad Dermatol. 2015;72(1):159–67.

    PubMed  CAS  Google Scholar 

  1408. Liebmann RD, Anderson B, McCarthy KP, Chow JW. The polymerase chain reaction in the diagnosis of early mycosis fungoides. J Pathol. 1997;182(3):282–7.

    PubMed  CAS  Google Scholar 

  1409. Guitart J, Camisa C, Ehrlich M, Bergfeld WF. Long-term implications of T-cell receptor gene rearrangement analysis by Southern blot in patients with cutaneous T-cell lymphoma. J Am Acad Dermatol. 2003;48(5):775–9.

    PubMed  Google Scholar 

  1410. Signoretti S, Murphy M, Cangi MG, Puddu P, Kadin ME, Loda M. Detection of clonal T-cell receptor gamma gene rearrangements in paraffin-embedded tissue by polymerase chain reaction and nonradioactive single-strand conformational polymorphism analysis. Am J Pathol. 1999;154(1):67–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  1411. Li N, Bhawan J. New insights into the applicability of T-cell receptor gamma gene rearrangement analysis in cutaneous T-cell lymphoma. J Cutan Pathol. 2001;28(8):412–8.

    PubMed  CAS  Google Scholar 

  1412. Assaf C, Hummel M, Steinhoff M, et al. Early TCR-beta and TCR-gamma PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma: diagnostic and prognostic implications. Blood. 2005;105(2):503–10.

    PubMed  CAS  Google Scholar 

  1413. Groenen PJ, Langerak AW, van Dongen JJ, van Krieken JH. Pitfalls in TCR gene clonality testing: teaching cases. J Hematop. 2008;1(2):97–109.

    PubMed  PubMed Central  Google Scholar 

  1414. Ponti R, Fierro MT, Quaglino P, et al. TCRgamma-chain gene rearrangement by PCR-based GeneScan: diagnostic accuracy improvement and clonal heterogeneity analysis in multiple cutaneous T-cell lymphoma samples. J Invest Dermatol. 2008;128(4):1030–8.

    PubMed  CAS  Google Scholar 

  1415. Bignon YJ, Souteyrand P, Roger H, et al. Clonotypic heterogeneity in cutaneous T-cell lymphomas. Cancer Res. 1990;50(20):6620–5.

    PubMed  CAS  Google Scholar 

  1416. Vega F, Luthra R, Medeiros LJ, et al. Clonal heterogeneity in mycosis fungoides and its relationship to clinical course. Blood. 2002;100(9):3369–73.

    PubMed  CAS  Google Scholar 

  1417. Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22.

    PubMed  CAS  Google Scholar 

  1418. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.

    PubMed  CAS  Google Scholar 

  1419. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  1420. Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sezary syndrome. JAMA. 1992;267(10):1354–8.

    PubMed  CAS  Google Scholar 

  1421. Trotter MJ, Whittaker SJ, Orchard GE, Smith NP. Cutaneous histopathology of Sezary syndrome: a study of 41 cases with a proven circulating T-cell clone. J Cutan Pathol. 1997;24(5):286–91.

    PubMed  CAS  Google Scholar 

  1422. Diwan AH, Prieto VG, Herling M, Duvic M, Jone D. Primary Sezary syndrome commonly shows low-grade cytologic atypia and an absence of epidermotropism. Am J Clin Pathol. 2005;123(4):510–5.

    PubMed  Google Scholar 

  1423. Cetinozman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379–85.

    PubMed  Google Scholar 

  1424. Sandberg Y, Heule F, Lam K, et al. Molecular immunoglobulin/T- cell receptor clonality analysis in cutaneous lymphoproliferations. Experience with the BIOMED-2 standardized polymerase chain reaction protocol. Haematologica. 2003;88(6):659–70.

    PubMed  CAS  Google Scholar 

  1425. Beylot-Barry M, Sibaud V, Thiebaut R, et al. Evidence that an identical T cell clone in skin and peripheral blood lymphocytes is an independent prognostic factor in primary cutaneous T cell lymphomas. J Invest Dermatol. 2001;117(4):920–6.

    PubMed  CAS  Google Scholar 

  1426. Guitart J, Magro C. Cutaneous T-cell lymphoid dyscrasia: a unifying term for idiopathic chronic dermatoses with persistent T-cell clones. Arch Dermatol. 2007;143(7):921–32.

    PubMed  CAS  Google Scholar 

  1427. French LE, Rook AH. T cell clonality and the effect of photopheresis in systemic sclerosis and graft versus host disease. Transfus Apher Sci. 2002;26(3):191–6.

    PubMed  Google Scholar 

  1428. Delfau-Larue MH, Laroche L, Wechsler J, et al. Diagnostic value of dominant T-cell clones in peripheral blood in 363 patients presenting consecutively with a clinical suspicion of cutaneous lymphoma. Blood. 2000;96(9):2987–92.

    PubMed  CAS  Google Scholar 

  1429. Vermeer MH, van Doorn R, Dijkman R, et al. Novel and highly recurrent chromosomal alterations in Sezary syndrome. Cancer Res. 2008;68(8):2689–98.

    PubMed  CAS  Google Scholar 

  1430. Willemze R, Beljaards RC. Spectrum of primary cutaneous CD30 (Ki-1)-positive lymphoproliferative disorders. A proposal for classification and guidelines for management and treatment. J Am Acad Dermatol. 1993;28(6):973–80.

    PubMed  CAS  Google Scholar 

  1431. Bekkenk MW, Geelen FA, van Voorst Vader PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood. 2000;95(12):3653–61.

    PubMed  CAS  Google Scholar 

  1432. Kim YH, Willemze R, Pimpinelli N, et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(2):479–84.

    PubMed  CAS  Google Scholar 

  1433. Willemze R, Kerl H, Sterry W, et al. EORTC classification for primary cutaneous lymphomas: a proposal from the Cutaneous Lymphoma Study Group of the European Organization for Research and Treatment of Cancer. Blood. 1997;90(1):354–71.

    PubMed  CAS  Google Scholar 

  1434. Saggini A, Gulia A, Argenyi Z, et al. A variant of lymphomatoid papulosis simulating primary cutaneous aggressive epidermotropic CD8+ cytotoxic T-cell lymphoma. Description of 9 cases. Am J Surg Pathol. 2010;34(8):1168–75.

    PubMed  Google Scholar 

  1435. McQuitty E, Curry JL, Tetzlaff MT, Prieto VG, Duvic M, Torres-Cabala C. The differential diagnosis of CD8-positive (“type D”) lymphomatoid papulosis. J Cutan Pathol. 2014;41(2):88–100.

    PubMed  Google Scholar 

  1436. Kempf W, Kazakov DV, Scharer L, et al. Angioinvasive lymphomatoid papulosis: a new variant simulating aggressive lymphomas. Am J Surg Pathol. 2013;37(1):1–13.

    PubMed  Google Scholar 

  1437. Kempf W, Kazakov DV, Baumgartner HP, Kutzner H. Follicular lymphomatoid papulosis revisited: a study of 11 cases, with new histopathological findings. J Am Acad Dermatol. 2013;68(5):809–16.

    PubMed  Google Scholar 

  1438. Karai LJ, Kadin ME, Hsi ED, et al. Chromosomal rearrangements of 6p25.3 define a new subtype of lymphomatoid papulosis. Am J Surg Pathol. 2013;37(8):1173–81.

    PubMed  Google Scholar 

  1439. Mann KP, Hall B, Kamino H, Borowitz MJ, Ratech H. Neutrophil-rich, Ki-1-positive anaplastic large-cell malignant lymphoma. Am J Surg Pathol. 1995;19(4):407–16.

    PubMed  CAS  Google Scholar 

  1440. Ralfkiaer E, Stein H, Wantzin GL, Thomsen K, Ralfkiaer N, Mason DY. Lymphomatoid papulosis. Characterization of skin infiltrates by monoclonal antibodies. Am J Clin Pathol. 1985;84(5):587–93.

    PubMed  CAS  Google Scholar 

  1441. Kadin M, Nasu K, Sako D, Said J, Vonderheid E. Lymphomatoid papulosis. A cutaneous proliferation of activated helper T cells expressing Hodgkin’s disease-associated antigens. Am J Pathol. 1985;119(2):315–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  1442. Massone C, Cerroni L. Phenotypic variability in primary cutaneous anaplastic large T-cell lymphoma: a study on 35 patients. Am J Dermatopathol. 2014;36(2):153–7.

    PubMed  Google Scholar 

  1443. ten Berge RL, Snijdewint FG, von Mensdorff-Pouilly S, et al. MUC1 (EMA) is preferentially expressed by ALK positive anaplastic large cell lymphoma, in the normally glycosylated or only partly hypoglycosylated form. J Clin Pathol. 2001;54(12):933–9.

    PubMed  Google Scholar 

  1444. Kadin ME, Pinkus JL, Pinkus GS, et al. Primary cutaneous ALCL with phosphorylated/activated cytoplasmic ALK and novel phenotype: EMA/MUC1+, cutaneous lymphocyte antigen negative. Am J Surg Pathol. 2008;32(9):1421–6.

    PubMed  Google Scholar 

  1445. Greisser J, Palmedo G, Sander C, et al. Detection of clonal rearrangement of T-cell receptor genes in the diagnosis of primary cutaneous CD30 lymphoproliferative disorders. J Cutan Pathol. 2006;33(11):711–5.

    PubMed  Google Scholar 

  1446. Zackheim HS, Jones C, Leboit PE, Kashani-Sabet M, McCalmont TH, Zehnder J. Lymphomatoid papulosis associated with mycosis fungoides: a study of 21 patients including analyses for clonality. J Am Acad Dermatol. 2003;49(4):620–3.

    PubMed  Google Scholar 

  1447. Chott A, Vonderheid EC, Olbricht S, Miao NN, Balk SP, Kadin ME. The dominant T cell clone is present in multiple regressing skin lesions and associated T cell lymphomas of patients with lymphomatoid papulosis. J Invest Dermatol. 1996;106(4):696–700.

    PubMed  CAS  Google Scholar 

  1448. de la Garza Bravo MM, Patel KP, Loghavi S, et al. Shared clonality in distinctive lesions of lymphomatoid papulosis and mycosis fungoides occurring in the same patients suggests a common origin. Hum Pathol. 2015;46(4):558–69.

    PubMed  Google Scholar 

  1449. DeCoteau JF, Butmarc JR, Kinney MC, Kadin ME. The t(2;5) chromosomal translocation is not a common feature of primary cutaneous CD30+ lymphoproliferative disorders: comparison with anaplastic large-cell lymphoma of nodal origin. Blood. 1996;87(8):3437–41.

    PubMed  CAS  Google Scholar 

  1450. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  1451. Vasmatzis G, Johnson SH, Knudson RA, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  1452. Chavan RN, Bridges AG, Knudson RA, et al. Somatic rearrangement of the TP63 gene preceding development of mycosis fungoides with aggressive clinical course. Blood Cancer J. 2014;4:e253.

    PubMed  PubMed Central  CAS  Google Scholar 

  1453. Willemze R, Jansen PM, Cerroni L, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood. 2008;111(2):838–45.

    PubMed  CAS  Google Scholar 

  1454. Magro CM, Schaefer JT, Morrison C, Porcu P. Atypical lymphocytic lobular panniculitis: a clonal subcutaneous T-cell dyscrasia. J Cutan Pathol. 2008;35(10):947–54.

    PubMed  Google Scholar 

  1455. Gonzalez CL, Medeiros LJ, Braziel RM, Jaffe ES. T-cell lymphoma involving subcutaneous tissue. A clinicopathologic entity commonly associated with hemophagocytic syndrome. Am J Surg Pathol. 1991;15(1):17–27.

    PubMed  CAS  Google Scholar 

  1456. Parveen Z, Thompson K. Subcutaneous panniculitis-like T-cell lymphoma: redefinition of diagnostic criteria in the recent World Health Organization-European Organization for Research and Treatment of Cancer classification for cutaneous lymphomas. Arch Pathol Lab Med. 2009;133(2):303–8.

    PubMed  Google Scholar 

  1457. Kumar S, Krenacs L, Medeiros J, et al. Subcutaneous panniculitic T-cell lymphoma is a tumor of cytotoxic T lymphocytes. Hum Pathol. 1998;29(4):397–403.

    PubMed  CAS  Google Scholar 

  1458. Toro JR, Beaty M, Sorbara L, et al. gamma delta T-cell lymphoma of the skin: a clinical, microscopic, and molecular study. Arch Dermatol. 2000;136(8):1024–32.

    PubMed  CAS  Google Scholar 

  1459. Guitart J, Weisenburger DD, Subtil A, et al. Cutaneous gammadelta T-cell lymphomas: a spectrum of presentations with overlap with other cytotoxic lymphomas. Am J Surg Pathol. 2012;36(11):1656–65.

    PubMed  Google Scholar 

  1460. Arnulf B, Copie-Bergman C, Delfau-Larue MH, et al. Nonhepatosplenic gammadelta T-cell lymphoma: a subset of cytotoxic lymphomas with mucosal or skin localization. Blood. 1998;91(5):1723–31.

    PubMed  CAS  Google Scholar 

  1461. Kempf W, Kazakov DV, Scheidegger PE, Schlaak M, Tantcheva-Poor I. Two cases of primary cutaneous lymphoma with a gamma/delta+ phenotype and an indolent course: further evidence of heterogeneity of cutaneous gamma/delta+ T-cell lymphomas. Am J Dermatopathol. 2014;36(7):570–7.

    PubMed  Google Scholar 

  1462. Merrill ED, Agbay R, Miranda RN, et al. Primary cutaneous T-cell lymphomas showing gamma-delta (gammadelta) phenotype and predominantly epidermotropic pattern are clinicopathologically distinct from classic primary cutaneous gammadelta T-cell lymphomas. Am J Surg Pathol. 2017;41(2):204–15.

    PubMed  Google Scholar 

  1463. Massone C, Chott A, Metze D, et al. Subcutaneous, blastic natural killer (NK), NK/T-cell, and other cytotoxic lymphomas of the skin: a morphologic, immunophenotypic, and molecular study of 50 patients. Am J Surg Pathol. 2004;28(6):719–35.

    PubMed  Google Scholar 

  1464. Ramani NS, Curry JL, Merrill ED, et al. Primary cutaneous gamma-delta (gamma/delta) T-cell lymphoma: an unusual case with very subtle histopathological findings. Am J Dermatopathol. 2016;38(10):e147–9.

    PubMed  Google Scholar 

  1465. King RL, Yan AC, Sekiguchi DR, Choi JK. Atypical cutaneous gammadelta T cell proliferation with morphologic features of lymphoma but with clinical features and course of PLEVA or lymphomatoid papulosis. J Cutan Pathol. 2015;42:1012.

    Google Scholar 

  1466. Beltraminelli H, Leinweber B, Kerl H, Cerroni L. Primary cutaneous CD4+ small−/medium-sized pleomorphic T-cell lymphoma: a cutaneous nodular proliferation of pleomorphic T lymphocytes of undetermined significance? A study of 136 cases. Am J Dermatopathol. 2009;31(4):317–22.

    PubMed  Google Scholar 

  1467. Garcia-Herrera A, Colomo L, Camos M, et al. Primary cutaneous small/medium CD4+ T-cell lymphomas: a heterogeneous group of tumors with different clinicopathologic features and outcome. J Clin Oncol. 2008;26(20):3364–71.

    PubMed  Google Scholar 

  1468. Williams VL, Torres-Cabala CA, Duvic M. Primary cutaneous small- to medium-sized CD4+ pleomorphic T-cell lymphoma: a retrospective case series and review of the provisional cutaneous lymphoma category. Am J Clin Dermatol. 2011;12(6):389–401.

    PubMed  Google Scholar 

  1469. Alberti-Violetti S, Torres-Cabala CA, Talpur R, et al. Clinicopathological and molecular study of primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma. J Cutan Pathol. 2016;43(12):1121–30.

    PubMed  Google Scholar 

  1470. Rodriguez Pinilla SM, Roncador G, Rodriguez-Peralto JL, et al. Primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma expresses follicular T-cell markers. Am J Surg Pathol. 2009;33(1):81–90.

    PubMed  Google Scholar 

  1471. Berti E, Tomasini D, Vermeer MH, Meijer CJ, Alessi E, Willemze R. Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas. A distinct clinicopathological entity with an aggressive clinical behavior. Am J Pathol. 1999;155(2):483–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  1472. Gormley RH, Hess SD, Anand D, Junkins-Hopkins J, Rook AH, Kim EJ. Primary cutaneous aggressive epidermotropic CD8+ T-cell lymphoma. J Am Acad Dermatol. 2010;62(2):300–7.

    PubMed  Google Scholar 

  1473. Robson A, Assaf C, Bagot M, et al. Aggressive epidermotropic cutaneous CD8+ lymphoma: a cutaneous lymphoma with distinct clinical and pathological features. Report of an EORTC Cutaneous Lymphoma Task Force Workshop. Histopathology. 2015;67(4):425–41.

    PubMed  Google Scholar 

  1474. Petrella T, Maubec E, Cornillet-Lefebvre P, et al. Indolent CD8-positive lymphoid proliferation of the ear: a distinct primary cutaneous T-cell lymphoma? Am J Surg Pathol. 2007;31(12):1887–92.

    PubMed  Google Scholar 

  1475. Greenblatt D, Ally M, Child F, et al. Indolent CD8(+) lymphoid proliferation of acral sites: a clinicopathologic study of six patients with some atypical features. J Cutan Pathol. 2013;40(2):248–58.

    PubMed  Google Scholar 

  1476. Weaver J, Mahindra AK, Pohlman B, Jin T, Hsi ED. Non-mycosis fungoides cutaneous T-cell lymphoma: reclassification according to the WHO-EORTC classification. J Cutan Pathol. 2010;37(5):516–24.

    PubMed  Google Scholar 

  1477. Paulli M, Berti E. Cutaneous T-cell lymphomas (including rare subtypes). Current concepts. II. Haematologica. 2004;89(11):1372–88.

    PubMed  Google Scholar 

  1478. Le Loarer F, Barete S, Vallat L, et al. Primary cutaneous CD8+ T-cell lymphoma masquerading as acral vascular syndrome. Acta Derm Venereol. 2014;94(3):317–9.

    PubMed  Google Scholar 

  1479. Cetinozman F, Jansen PM, Willemze R. Expression of programmed death-1 in primary cutaneous CD4-positive small/medium-sized pleomorphic T-cell lymphoma, cutaneous pseudo-T-cell lymphoma, and other types of cutaneous T-cell lymphoma. Am J Surg Pathol. 2012;36(1):109–16.

    PubMed  Google Scholar 

  1480. Arber DA, Weiss LM, Albujar PF, Chen YY, Jaffe ES. Nasal lymphomas in Peru. High incidence of T-cell immunophenotype and Epstein-Barr virus infection. Am J Surg Pathol. 1993;17(4):392–9.

    PubMed  CAS  Google Scholar 

  1481. Jaffe ES. Nasal and nasal-type T/NK cell lymphoma: a unique form of lymphoma associated with the Epstein-Barr virus. Histopathology. 1995;27(6):581–3.

    PubMed  CAS  Google Scholar 

  1482. Chan JK, Sin VC, Wong KF, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89(12):4501–13.

    PubMed  CAS  Google Scholar 

  1483. Liao JB, Chuang SS, Chen HC, Tseng HH, Wang JS, Hsieh PP. Clinicopathologic analysis of cutaneous lymphoma in taiwan: a high frequency of extranodal natural killer/t-cell lymphoma, nasal type, with an extremely poor prognosis. Arch Pathol Lab Med. 2010;134(7):996–1002.

    PubMed  Google Scholar 

  1484. Jaffe ES, Chan JK, Su IJ, et al. Report of the workshop on nasal and related extranodal angiocentric T/natural killer cell lymphomas. Definitions, differential diagnosis, and epidemiology. Am J Surg Pathol. 1996;20(1):103–11.

    PubMed  CAS  Google Scholar 

  1485. Chan JK. Natural killer cell neoplasms. Anat Pathol. 1998;3:77–145.

    PubMed  CAS  Google Scholar 

  1486. Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009;113(17):3931–7.

    PubMed  CAS  Google Scholar 

  1487. Chan JK, Ng CS, Ngan KC, Hui PK, Lo ST, Lau WH. Angiocentric T-cell lymphoma of the skin. An aggressive lymphoma distinct from mycosis fungoides. Am J Surg Pathol. 1988;12(11):861–76.

    PubMed  CAS  Google Scholar 

  1488. Elenitoba-Johnson KS, Zarate-Osorno A, Meneses A, et al. Cytotoxic granular protein expression, Epstein-Barr virus strain type, and latent membrane protein-1 oncogene deletions in nasal T-lymphocyte/natural killer cell lymphomas from Mexico. Mod Pathol. 1998;11(8):754–61.

    PubMed  CAS  Google Scholar 

  1489. Quintanilla-Martinez L, Franklin JL, Guerrero I, et al. Histological and immunophenotypic profile of nasal NK/T cell lymphomas from Peru: high prevalence of p53 overexpression. Hum Pathol. 1999;30(7):849–55.

    PubMed  CAS  Google Scholar 

  1490. Nicolae A, Ganapathi KA, Pham TH, et al. EBV-negative aggressive NK-cell leukemia/lymphoma: clinical, pathologic, and genetic features. Am J Surg Pathol. 2017;41(1):67–74.

    PubMed  PubMed Central  Google Scholar 

  1491. Lin CW, Lee WH, Chang CL, Yang JY, Hsu SM. Restricted killer cell immunoglobulin-like receptor repertoire without T-cell receptor gamma rearrangement supports a true natural killer-cell lineage in a subset of sinonasal lymphomas. Am J Pathol. 2001;159(5):1671–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  1492. Magana M, Sangueza P, Gil-Beristain J, et al. Angiocentric cutaneous T-cell lymphoma of childhood (hydroa-like lymphoma): a distinctive type of cutaneous T-cell lymphoma. J Am Acad Dermatol. 1998;38(4):574–9.

    PubMed  CAS  Google Scholar 

  1493. Tokura Y, Ishihara S, Tagawa S, Seo N, Ohshima K, Takigawa M. Hypersensitivity to mosquito bites as the primary clinical manifestation of a juvenile type of Epstein-Barr virus-associated natural killer cell leukemia/lymphoma. J Am Acad Dermatol. 2001;45(4):569–78.

    PubMed  CAS  Google Scholar 

  1494. Barrionuevo C, Anderson VM, Zevallos-Giampietri E, et al. Hydroa-like cutaneous T-cell lymphoma: a clinicopathologic and molecular genetic study of 16 pediatric cases from Peru. Appl Immunohistochem Mol Morphol. 2002;10(1):7–14.

    PubMed  Google Scholar 

  1495. Quintanilla-Martinez L, Ridaura C, Nagl F, et al. Hydroa vacciniforme-like lymphoma: a chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood. 2013;122(18):3101–10.

    PubMed  CAS  Google Scholar 

  1496. Yamaguchi T, Ohshima K, Karube K, et al. Clinicopathological features of cutaneous lesions of adult T-cell leukaemia/ lymphoma. Br J Dermatol. 2005;152(1):76–81.

    PubMed  CAS  Google Scholar 

  1497. Ohshima K. Pathological features of diseases associated with human T-cell leukemia virus type I. Cancer Sci. 2007;98(6):772–8.

    PubMed  CAS  Google Scholar 

  1498. Marchetti MA, Pulitzer MP, Myskowski PL, et al. Cutaneous manifestations of human T-cell lymphotrophic virus type-1-associated adult T-cell leukemia/lymphoma: a single-center, retrospective study. J Am Acad Dermatol. 2015;72(2):293–301.

    PubMed  Google Scholar 

  1499. Waldmann TA, White JD, Goldman CK, et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood. 1993;82(6):1701–12.

    PubMed  CAS  Google Scholar 

  1500. Tokura Y, Sawada Y, Shimauchi T. Skin manifestations of adult T-cell leukemia/lymphoma: clinical, cytological and immunological features. J Dermatol. 2014;41(1):19–25.

    PubMed  CAS  Google Scholar 

  1501. Chuang SS. Cutaneous non-MF T-cell and NK-cell lymphoproliferative disorders. In: Murphy MJ, editor. Molecular diagnostics in dermatology and dermatopathology. New York: Humana Press; 2011. p. 241–2.

    Google Scholar 

  1502. Martel P, Laroche L, Courville P, et al. Cutaneous involvement in patients with angioimmunoblastic lymphadenopathy with dysproteinemia: a clinical, immunohistological, and molecular analysis. Arch Dermatol. 2000;136(7):881–6.

    PubMed  CAS  Google Scholar 

  1503. Botros N, Cerroni L, Shawwa A, et al. Cutaneous manifestations of angioimmunoblastic T-cell lymphoma: clinical and pathological characteristics. Am J Dermatopathol. 2015;37(4):274–83.

    PubMed  Google Scholar 

  1504. Magro CM, Momtahen S, Lee BA, Swanson DL, Pavlovic MD. Epidermotropic B-cell lymphoma: a unique subset of CXCR3-positive marginal zone lymphoma. Am J Dermatopathol. 2016;38(2):105–12.

    PubMed  Google Scholar 

  1505. Kempf W, Ralfkiaer E, Duncan L, Burg G, Willemze R, Swerdlow SH, Jaffe ES. Cutaneous marginal zone B-cell lymphoma. In: PE LB, Burg G, Weedon D, Sarasin A, editors. Pathology and genetics of skin tumors. Lyon: IARC Press; 2006. p. 194–5.

    Google Scholar 

  1506. Baldassano MF, Bailey EM, Ferry JA, Harris NL, Duncan LM. Cutaneous lymphoid hyperplasia and cutaneous marginal zone lymphoma: comparison of morphologic and immunophenotypic features. Am J Surg Pathol. 1999;23(1):88–96.

    PubMed  CAS  Google Scholar 

  1507. Edinger JT, Kant JA, Swerdlow SH. Cutaneous marginal zone lymphomas have distinctive features and include 2 subsets. Am J Surg Pathol. 2010;34(12):1830–41.

    PubMed  Google Scholar 

  1508. Brenner I, Roth S, Puppe B, Wobser M, Rosenwald A, Geissinger E. Primary cutaneous marginal zone lymphomas with plasmacytic differentiation show frequent IgG4 expression. Mod Pathol. 2013;26(12):1568–76.

    PubMed  CAS  Google Scholar 

  1509. De Souza A, Ferry JA, Burghart DR, et al. IgG4 expression in primary cutaneous marginal zone lymphoma: a multicenter study. Appl Immunohistochem Mol Morphol. 2018;26(7):462–7.

    PubMed  Google Scholar 

  1510. Cheuk W, Yuen HK, Chan AC, et al. Ocular adnexal lymphoma associated with IgG4+ chronic sclerosing dacryoadenitis: a previously undescribed complication of IgG4-related sclerosing disease. Am J Surg Pathol. 2008;32(8):1159–67.

    PubMed  Google Scholar 

  1511. Beltran BE, Castillo JJ, Quinones P, et al. Extranodal marginal zone lymphoma from ocular adnexae with subcutaneous involvement. Am J Dermatopathol. 2014;36(11):e189–93.

    PubMed  Google Scholar 

  1512. Gallardo F, Bellosillo B, Serrano S, Pujol RM. Genotypic analysis in primary cutaneous lymphomas using the standardized BIOMED-2 polymerase chain reaction protocols. Actas Dermosifiliogr. 2008;99(8):608–20.

    PubMed  CAS  Google Scholar 

  1513. Lukowsky A, Marchwat M, Sterry W, Gellrich S. Evaluation of B-cell clonality in archival skin biopsy samples of cutaneous B-cell lymphoma by immunoglobulin heavy chain gene polymerase chain reaction. Leuk Lymphoma. 2006;47(3):487–93.

    PubMed  CAS  Google Scholar 

  1514. Cho-Vega JH, Vega F, Rassidakis G, Medeiros LJ. Primary cutaneous marginal zone B-cell lymphoma. Am J Clin Pathol. 2006;125(Suppl):S38–49.

    PubMed  Google Scholar 

  1515. Streubel B, Lamprecht A, Dierlamm J, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101(6):2335–9.

    PubMed  CAS  Google Scholar 

  1516. Wood GS, Kamath NV, Guitart J, et al. Absence of Borrelia burgdorferi DNA in cutaneous B-cell lymphomas from the United States. J Cutan Pathol. 2001;28(10):502–7.

    PubMed  CAS  Google Scholar 

  1517. Cerroni L, Arzberger E, Putz B, et al. Primary cutaneous follicle center cell lymphoma with follicular growth pattern. Blood. 2000;95(12):3922–8.

    PubMed  CAS  Google Scholar 

  1518. Willemze R, Meijer CJ, Sentis HJ, et al. Primary cutaneous large cell lymphomas of follicular center cell origin. A clinical follow-up study of nineteen patients. J Am Acad Dermatol. 1987;16(3 Pt 1):518–26.

    PubMed  CAS  Google Scholar 

  1519. Senff NJ, Hoefnagel JJ, Jansen PM, et al. Reclassification of 300 primary cutaneous B-Cell lymphomas according to the new WHO-EORTC classification for cutaneous lymphomas: comparison with previous classifications and identification of prognostic markers. J Clin Oncol. 2007;25(12):1581–7.

    PubMed  Google Scholar 

  1520. Garcia CF, Weiss LM, Warnke RA, Wood GS. Cutaneous follicular lymphoma. Am J Surg Pathol. 1986;10(7):454–63.

    PubMed  CAS  Google Scholar 

  1521. Cerroni L, Volkenandt M, Rieger E, Soyer HP, Kerl H. bcl-2 protein expression and correlation with the interchromosomal 14;18 translocation in cutaneous lymphomas and pseudolymphomas. J Invest Dermatol. 1994;102(2):231–5.

    PubMed  CAS  Google Scholar 

  1522. de Leval L, Ferry JA, Falini B, Shipp M, Harris NL. Expression of bcl-6 and CD10 in primary mediastinal large B-cell lymphoma: evidence for derivation from germinal center B cells? Am J Surg Pathol. 2001;25(10):1277–82.

    PubMed  Google Scholar 

  1523. Kodama K, Massone C, Chott A, Metze D, Kerl H, Cerroni L. Primary cutaneous large B-cell lymphomas: clinicopathologic features, classification, and prognostic factors in a large series of patients. Blood. 2005;106(7):2491–7.

    PubMed  CAS  Google Scholar 

  1524. Vergier B, Belaud-Rotureau MA, Benassy MN, et al. Neoplastic cells do not carry bcl2-JH rearrangements detected in a subset of primary cutaneous follicle center B-cell lymphomas. Am J Surg Pathol. 2004;28(6):748–55.

    PubMed  Google Scholar 

  1525. Abdul-Wahab A, Tang SY, Robson A, et al. Chromosomal anomalies in primary cutaneous follicle center cell lymphoma do not portend a poor prognosis. J Am Acad Dermatol. 2014;70(6):1010–20.

    PubMed  CAS  Google Scholar 

  1526. Paulli M, Viglio A, Vivenza D, et al. Primary cutaneous large B-cell lymphoma of the leg: histogenetic analysis of a controversial clinicopathologic entity. Hum Pathol. 2002;33(9):937–43.

    PubMed  Google Scholar 

  1527. Senff NJ, Willemze R. The applicability and prognostic value of the new TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: results on a large cohort of primary cutaneous B-cell lymphomas and comparison with the system used by the Dutch Cutaneous Lymphoma Group. Br J Dermatol. 2007;157(6):1205–11.

    PubMed  CAS  Google Scholar 

  1528. Plaza JA, Kacerovska D, Stockman DL, et al. The histomorphologic spectrum of primary cutaneous diffuse large B-cell lymphoma: a study of 79 cases. Am J Dermatopathol. 2011;33(7):649–55; quiz 656-648.

    PubMed  Google Scholar 

  1529. Vermeer MH, Geelen FA, van Haselen CW, et al. Primary cutaneous large B-cell lymphomas of the legs. A distinct type of cutaneous B-cell lymphoma with an intermediate prognosis. Dutch Cutaneous Lymphoma Working Group. Arch Dermatol. 1996;132(11):1304–8.

    PubMed  CAS  Google Scholar 

  1530. Koens L, Vermeer MH, Willemze R, Jansen PM. IgM expression on paraffin sections distinguishes primary cutaneous large B-cell lymphoma, leg type from primary cutaneous follicle center lymphoma. Am J Surg Pathol. 2010;34(7):1043–8.

    PubMed  Google Scholar 

  1531. Geelen FA, Vermeer MH, Meijer CJ, et al. bcl-2 protein expression in primary cutaneous large B-cell lymphoma is site-related. J Clin Oncol. 1998;16(6):2080–5.

    PubMed  CAS  Google Scholar 

  1532. Mao X, Lillington D, Child F, Russell-Jones R, Young B, Whittaker S. Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: identification of common genomic alterations in disease pathogenesis. Genes Chromosomes Cancer. 2002;35(2):144–55.

    PubMed  CAS  Google Scholar 

  1533. Hoefnagel JJ, Dijkman R, Basso K, et al. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood. 2005;105(9):3671–8.

    PubMed  CAS  Google Scholar 

  1534. Dijkman R, Tensen CP, Jordanova ES, et al. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma. J Clin Oncol. 2006;24(2):296–305.

    PubMed  CAS  Google Scholar 

  1535. Dojcinov SD, Venkataraman G, Raffeld M, Pittaluga S, Jaffe ES. EBV positive mucocutaneous ulcer – a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol. 2010;34(3):405–17.

    PubMed  PubMed Central  Google Scholar 

  1536. Hart M, Thakral B, Yohe S, et al. EBV-positive mucocutaneous ulcer in organ transplant recipients: a localized indolent posttransplant lymphoproliferative disorder. Am J Surg Pathol. 2014;38(11):1522–9.

    PubMed  Google Scholar 

  1537. Roglin J, Boer A. Skin manifestations of intravascular lymphoma mimic inflammatory diseases of the skin. Br J Dermatol. 2007;157(1):16–25.

    PubMed  CAS  Google Scholar 

  1538. Glass J, Hochberg FH, Miller DC. Intravascular lymphomatosis. A systemic disease with neurologic manifestations. Cancer. 1993;71(10):3156–64.

    PubMed  CAS  Google Scholar 

  1539. Ferreri AJ, Campo E, Seymour JF, et al. Intravascular lymphoma: clinical presentation, natural history, management and prognostic factors in a series of 38 cases, with special emphasis on the ‘cutaneous variant’. Br J Haematol. 2004;127(2):173–83.

    PubMed  Google Scholar 

  1540. Estalilla OC, Koo CH, Brynes RK, Medeiros LJ. Intravascular large B-cell lymphoma. A report of five cases initially diagnosed by bone marrow biopsy. Am J Clin Pathol. 1999;112(2):248–55.

    PubMed  CAS  Google Scholar 

  1541. Sleater JP, Segal GH, Scott MD, Masih AS. Intravascular (angiotropic) large cell lymphoma: determination of monoclonality by polymerase chain reaction on paraffin-embedded tissues. Mod Pathol. 1994;7(5):593–8.

    PubMed  CAS  Google Scholar 

  1542. Sen F, Medeiros LJ, Lu D, et al. Mantle cell lymphoma involving skin: cutaneous lesions may be the first manifestation of disease and tumors often have blastoid cytologic features. Am J Surg Pathol. 2002;26(10):1312–8.

    PubMed  Google Scholar 

  1543. Motegi S, Okada E, Nagai Y, Tamura A, Ishikawa O. Skin manifestation of mantle cell lymphoma. Eur J Dermatol. 2006;16(4):435–8.

    PubMed  Google Scholar 

  1544. Phelps A, Gorgan M, Elaba Z, et al. CD10-positive blastoid mantle cell lymphoma with secondary cutaneous involvement. J Cutan Pathol. 2013;40(8):765–7.

    PubMed  Google Scholar 

  1545. Robak E, Robak T. Skin lesions in chronic lymphocytic leukemia. Leuk Lymphoma. 2007;48(5):855–65.

    PubMed  Google Scholar 

  1546. Cerroni L, Zenahlik P, Hofler G, Kaddu S, Smolle J, Kerl H. Specific cutaneous infiltrates of B-cell chronic lymphocytic leukemia: a clinicopathologic and prognostic study of 42 patients. Am J Surg Pathol. 1996;20(8):1000–10.

    PubMed  CAS  Google Scholar 

  1547. Jasim ZF, Cooke N, Somerville JE, Hay RJ. Chronic lymphocytic leukaemia skin infiltrates affecting prominent parts of the face and the scalp. Br J Dermatol. 2006;154(5):981–2.

    PubMed  CAS  Google Scholar 

  1548. Plaza JA, Comfere NI, Gibson LE, et al. Unusual cutaneous manifestations of B-cell chronic lymphocytic leukemia. J Am Acad Dermatol. 2009;60(5):772–80.

    PubMed  Google Scholar 

  1549. Pedersen J, Carganello J, van der Weyden MB. Exaggerated reaction to insect bites in patients with chronic lymphocytic leukemia. Clinical and histological findings. Pathology. 1990;22(3):141–3.

    PubMed  CAS  Google Scholar 

  1550. Gera S, Dekmezian MS, Duvic M, Tschen JA, Vega F, Cho-Vega JH. Blastic plasmacytoid dendritic cell neoplasm: evolving insights in an aggressive hematopoietic malignancy with a predilection of skin involvement. Am J Dermatopathol. 2014;36(3):244–51.

    PubMed  Google Scholar 

  1551. Petrella T, Bagot M, Willemze R, et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms): a review. Am J Clin Pathol. 2005;123(5):662–75.

    PubMed  Google Scholar 

  1552. Jegalian AG, Facchetti F, Jaffe ES. Plasmacytoid dendritic cells: physiologic roles and pathologic states. Adv Anat Pathol. 2009;16(6):392–404.

    PubMed  PubMed Central  Google Scholar 

  1553. Brunetti L, Di Battista V, Venanzi A, et al. Blastic plasmacytoid dendritic cell neoplasm and chronic myelomonocytic leukemia: a shared clonal origin. Leukemia. 2017;31(5):1238–40.

    PubMed  CAS  Google Scholar 

  1554. Ascani S, Massone C, Ferrara G, et al. CD4-negative variant of CD4+/CD56+ hematodermic neoplasm: description of three cases. J Cutan Pathol. 2008;35(10):911–5.

    PubMed  Google Scholar 

  1555. Stenzinger A, Endris V, Pfarr N, et al. Targeted ultra-deep sequencing reveals recurrent and mutually exclusive mutations of cancer genes in blastic plasmacytoid dendritic cell neoplasm. Oncotarget. 2014;5(15):6404–13.

    PubMed  PubMed Central  Google Scholar 

  1556. Lee WJ, Moon HR, Won CH, et al. Precursor B- or T-lymphoblastic lymphoma presenting with cutaneous involvement: a series of 13 cases including 7 cases of cutaneous T-lymphoblastic lymphoma. J Am Acad Dermatol. 2014;70(2):318–25.

    PubMed  Google Scholar 

  1557. Muljono A, Graf NS, Arbuckle S. Primary cutaneous lymphoblastic lymphoma in children: series of eight cases with review of the literature. Pathology. 2009;41(3):223–8.

    PubMed  Google Scholar 

  1558. Yaar R, Rothman K, Mahalingam M. When dead cells tell tales-cutaneous involvement by precursor T-cell acute lymphoblastic lymphoma with an uncommon phenotype. Am J Dermatopathol. 2010;32(2):183–6.

    PubMed  Google Scholar 

  1559. Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. World Health Organization classification of tumors of hematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  1560. Cho-Vega JH, Medeiros LJ, Prieto VG, Vega F. Leukemia cutis. Am J Clin Pathol. 2008;129(1):130–42.

    PubMed  Google Scholar 

  1561. Cronin DM, George TI, Sundram UN. An updated approach to the diagnosis of myeloid leukemia cutis. Am J Clin Pathol. 2009;132(1):101–10.

    PubMed  Google Scholar 

  1562. Hejmadi RK, Thompson D, Shah F, Naresh KN. Cutaneous presentation of aleukemic monoblastic leukemia cutis – a case report and review of literature with focus on immunohistochemistry. J Cutan Pathol. 2008;35(Suppl 1):46–9.

    PubMed  Google Scholar 

  1563. Sotiriou E, Manousari A, Apalla Z, Papagarifallou I, Ioannides D. Aleukaemic congenital leukaemia cutis: a critical primary sign of systemic disease. Acta Derm Venereol. 2011;91(2):203–4.

    PubMed  Google Scholar 

  1564. Watson KM, Mufti G, Salisbury JR, du Vivier AW, Creamer D. Spectrum of clinical presentation, treatment and prognosis in a series of eight patients with leukaemia cutis. Clin Exp Dermatol. 2006;31(2):218–21.

    PubMed  CAS  Google Scholar 

  1565. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. World Health Organization classification of tumors of hematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  1566. Danialan R, Torres-Cabala CA. Cutaneous manifestations of myeloproliferative neoplasms. In: Gru A, Schaffer A, editors. Hematopathology of the skin. 1st ed. Philadelphia: Wolters Kluwer Heath; 2017. p. 537–49.

    Google Scholar 

  1567. Vitte F, Fabiani B, Benet C, et al. Specific skin lesions in chronic myelomonocytic leukemia: a spectrum of myelomonocytic and dendritic cell proliferations: a study of 42 cases. Am J Surg Pathol. 2012;36(9):1302–16.

    PubMed  Google Scholar 

  1568. Scholl S, Luftner J, Mugge LO, Schmidt V, Fricke HJ, Hoffken K. Sustained expression of nucleophosmin (NPM1) mutation at late relapse presenting as isolated myeloid sarcoma in a patient with acute myeloid leukemia. Ann Hematol. 2007;86(10):763–5.

    PubMed  Google Scholar 

  1569. Sen F, Zhang XX, Prieto VG, Shea CR, Qumsiyeh MB. Increased incidence of trisomy 8 in acute myeloid leukemia with skin infiltration (leukemia cutis). Diagn Mol Pathol. 2000;9(4):190–4.

    PubMed  CAS  Google Scholar 

  1570. Douet-Guilbert N, Morel F, Le Bris MJ, Sassolas B, Giroux JD, De Braekeleer M. Rearrangement of MLL in a patient with congenital acute monoblastic leukemia and granulocytic sarcoma associated with a t(1;11)(p36;q23) translocation. Leuk Lymphoma. 2005;46(1):143–6.

    PubMed  CAS  Google Scholar 

  1571. Byrd JC, Edenfield WJ, Shields DJ, Dawson NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–16.

    PubMed  CAS  Google Scholar 

  1572. Pileri SA, Ascani S, Cox MC, et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21(2):340–50.

    PubMed  CAS  Google Scholar 

  1573. Murphy M. Leukemia Cutis. In: Murphy MJ, editor. Molecular diagnostics in dermatology and dermatopathology. New York: Humana Press; 2011.

    Google Scholar 

  1574. Hartmann K, Henz BM. Classification of cutaneous mastocytosis: a modified consensus proposal. Leuk Res. 2002;26(5):483–4; author reply 485–486.

    PubMed  Google Scholar 

  1575. Austen KF. Systemic mastocytosis. N Engl J Med. 1992;326(9):639–40.

    PubMed  CAS  Google Scholar 

  1576. Hartmann K, Escribano L, Grattan C, et al. Cutaneous manifestations in patients with mastocytosis: consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol. 2016;137(1):35–45.

    PubMed  Google Scholar 

  1577. Lange M, Niedoszytko M, Nedoszytko B, Lata J, Trzeciak M, Biernat W. Diffuse cutaneous mastocytosis: analysis of 10 cases and a brief review of the literature. J Eur Acad Dermatol Venereol. 2012;26(12):1565–71.

    PubMed  CAS  Google Scholar 

  1578. Watkins CE, Bokor WB, Leicht S, Youngberg G, Krishnaswamy G. Telangiectasia macularis eruptiva perstans: more than skin deep. Dermatol Reports. 2011;3(1):e12.

    PubMed  PubMed Central  Google Scholar 

  1579. Valent P, Akin C, Escribano L, et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Investig. 2007;37(6):435–53.

    CAS  Google Scholar 

  1580. Willemze R, Ruiter DJ, Scheffer E, van Vloten WA. Diffuse cutaneous mastocytosis with multiple cutaneous mastocytomas. Report of a case with clinical, histopathological and ultrastructural aspects. Br J Dermatol. 1980;102(5):601–7.

    PubMed  CAS  Google Scholar 

  1581. Horny HP, Valent P. Histopathological and immunohistochemical aspects of mastocytosis. Int Arch Allergy Immunol. 2002;127(2):115–7.

    PubMed  CAS  Google Scholar 

  1582. Hollmann TJ, Brenn T, Hornick JL. CD25 expression on cutaneous mast cells from adult patients presenting with urticaria pigmentosa is predictive of systemic mastocytosis. Am J Surg Pathol. 2008;32(1):139–45.

    PubMed  Google Scholar 

  1583. Sotlar K, Cerny-Reiterer S, Petat-Dutter K, et al. Aberrant expression of CD30 in neoplastic mast cells in high-grade mastocytosis. Mod Pathol. 2011;24(4):585–95.

    PubMed  CAS  Google Scholar 

  1584. Bergman R, Khamaysi K, Khamaysi Z, Ben AY. A study of histologic and immunophenotypical staining patterns in cutaneous lymphoid hyperplasia. J Am Acad Dermatol. 2011;65(1):112–24.

    PubMed  Google Scholar 

  1585. Magro CM, Crowson AN, Kovatich AJ, Burns F. Drug-induced reversible lymphoid dyscrasia: a clonal lymphomatoid dermatitis of memory and activated T cells. Hum Pathol. 2003;34(2):119–29.

    PubMed  CAS  Google Scholar 

  1586. Fukamachi S, Sugita K, Sawada Y, Bito T, Nakamura M, Tokura Y. Drug-induced CD30+ T cell pseudolymphoma. Eur J Dermatol. 2009;19(3):292–4.

    PubMed  Google Scholar 

  1587. Werner B, Massone C, Kerl H, Cerroni L. Large CD30-positive cells in benign, atypical lymphoid infiltrates of the skin. J Cutan Pathol. 2008;35(12):1100–7.

    PubMed  Google Scholar 

  1588. Griesser H, Feller AC, Sterry W. T-cell receptor and immunoglobulin gene rearrangements in cutaneous T-cell-rich pseudolymphomas. J Invest Dermatol. 1990;95(3):292–5.

    PubMed  CAS  Google Scholar 

  1589. Wood GS, Ngan BY, Tung R, et al. Clonal rearrangements of immunoglobulin genes and progression to B cell lymphoma in cutaneous lymphoid hyperplasia. Am J Pathol. 1989;135(1):13–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  1590. Lazar AP, Caro WA, Roenigk HH Jr, Pinski KS. Parapsoriasis and mycosis fungoides: the Northwestern University experience, 1970 to 1985. J Am Acad Dermatol. 1989;21(5 Pt 1):919–23.

    PubMed  CAS  Google Scholar 

  1591. Vakeva L, Sarna S, Vaalasti A, Pukkala E, Kariniemi AL, Ranki A. A retrospective study of the probability of the evolution of parapsoriasis en plaques into mycosis fungoides. Acta Derm Venereol. 2005;85(4):318–23.

    PubMed  Google Scholar 

  1592. Bowers S, Warshaw EM. Pityriasis lichenoides and its subtypes. J Am Acad Dermatol. 2006;55(4):557–72; quiz 573-556.

    PubMed  Google Scholar 

  1593. Conde-Taboada A, Roson E, Fernandez-Redondo V, Garcia-Doval I, De La Torre C, Cruces M. Lymphomatoid contact dermatitis induced by gold earrings. Contact Dermatitis. 2007;56(3):179–81.

    PubMed  Google Scholar 

  1594. Magro C, Crowson AN, Kovatich A, Burns F. Pityriasis lichenoides: a clonal T-cell lymphoproliferative disorder. Hum Pathol. 2002;33(8):788–95.

    PubMed  Google Scholar 

  1595. Boyd AS, Vnencak-Jones CL. T-cell clonality in lichenoid purpura: a clinical and molecular evaluation of seven patients. Histopathology. 2003;43(3):302–3.

    PubMed  CAS  Google Scholar 

  1596. Toro JR, Sander CA, LeBoit PE. Persistent pigmented purpuric dermatitis and mycosis fungoides: simulant, precursor, or both? A study by light microscopy and molecular methods. Am J Dermatopathol. 1997;19(2):108–18.

    PubMed  CAS  Google Scholar 

  1597. Sweet RD. An Acute Febrile Neutrophilic Dermatosis. Br J Dermatol. 1964;76:349–56.

    PubMed  CAS  Google Scholar 

  1598. Paydas S. Sweet’s syndrome: a revisit for hematologists and oncologists. Crit Rev Oncol Hematol. 2013;86(1):85–95.

    PubMed  Google Scholar 

  1599. Galaria NA, Junkins-Hopkins JM, Kligman D, James WD. Neutrophilic dermatosis of the dorsal hands: pustular vasculitis revisited. J Am Acad Dermatol. 2000;43(5 Pt 1):870–4.

    PubMed  CAS  Google Scholar 

  1600. Cohen PR, Kurzrock R. Sweet’s syndrome revisited: a review of disease concepts. Int J Dermatol. 2003;42(10):761–78.

    PubMed  Google Scholar 

  1601. Alegria-Landa V, Rodriguez-Pinilla SM, Santos-Briz A, et al. Clinicopathologic, immunohistochemical, and molecular features of histiocytoid sweet syndrome. JAMA Dermatol. 2017;153(7):651–9.

    PubMed  PubMed Central  Google Scholar 

  1602. Haniffa MA, Wilkins BS, Blasdale C, Simpson NB. Cutaneous extramedullary hemopoiesis in chronic myeloproliferative and myelodysplastic disorders. J Am Acad Dermatol. 2006;55(2 Suppl):S28–31.

    PubMed  Google Scholar 

  1603. Wilson CS, Medeiros LJ. Extramedullary manifestations of myeloid neoplasms. Am J Clin Pathol. 2015;144(2):219–39.

    PubMed  Google Scholar 

  1604. LeBlanc RE, Lester L, Kwong B, Rieger KE. JAK2-positive cutaneous myelofibrosis presenting as sclerosing extramedullary hematopoietic tumors on the scalp: case presentation and review of the literature. J Cutan Pathol. 2015;42(11):858–62.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Torres-Cabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres-Cabala, C.A. et al. (2020). Skin. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics