Skip to main content

Solar Cell Fabrication and Characterisation

  • Chapter
  • First Online:
Next Generation Multilayer Graded Bandgap Solar Cells

Abstract

This chapter provides an insight into next-generation graded bandgap photovoltaic device fabrication. All-electrodeposited devices were fabricated using n-p, n-n-p, n-n + large Schottky barrier (SB) and n-n-n + SB architecture using ZnS, CdS and CdTe thin layers. The fabricated devices were evaluated using both current-voltage (I-V) and capacitance-voltage (C-V) techniques. The inclusion of Ga into the regular CdCl2 post-growth treatment and the effect of pH were also explored with the improved result as compared to the regular CdCl2 PGT. Based on all experimental findings as explored within the limit of this work, the most promising of the configurations examined are the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au with thicknesses of 120 nm (n-CdS), 1200 nm (n-CdTe), 30 nm (p-CdTe) and 100 nm (Au). The highest conversion efficiencies observed for two separate batches were 15.3 and 18.4%. The devices with the 18.4% efficiency showed some instability and therefore require further investigation. The glass/FTO/n-ZnS/n-CdS/n-CdTe/Au configuration with thicknesses of 50 nm (n-ZnS), 65 nm (n-CdS), 1200 nm (n-CdTe) and 100 nm (Au) also shows promising results with the highest efficiency achieved being 14.1% owing to bandgap grading strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.M. Dharmadasa, Review of the CdCl2 treatment used in CdS/CdTe thin-film solar cell development and new evidence towards improved understanding. Coatings 4, 282–307 (2014). https://doi.org/10.3390/coatings4020282

    Article  Google Scholar 

  2. O.I. Olusola, Optoelectronic Devices Based on Graded Bandgap Structures Utilising Electroplated Semiconductors (Sheffield Hallam University, Sheffield, 2016)

    Google Scholar 

  3. H.I. Salim, Multilayer Solar Cells Based on CdTe Grown from Nitrate Precursor (Sheffield Hallam University, Sheffield, 2016)

    Google Scholar 

  4. O.K. Echendu, Thin-Film Solar Cells Using All-Electrodeposited ZnS, CdS and CdTe Materials (Sheffield Hallam University, Sheffield, 2014)

    Google Scholar 

  5. A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin-films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.09.001

    Article  Google Scholar 

  6. P. Fernández, Defect structure and luminescence properties of CdTe based compounds. J. Optoelectron. Adv. Mater. 5, 369–388 (2003)

    Google Scholar 

  7. I.M. Dharmadasa, Recent developments and progress on electrical contacts to CdTe, CdS and ZnSe with special reference to barrier contacts to CdTe. Prog. Cryst. Growth Charact. Mater. 36, 249–290 (1998). https://doi.org/10.1016/S0960-8974(98)00010-2

    Article  Google Scholar 

  8. I.M. Dharmadasa, C.J. Blomfield, C.G. Scott, R. Coratger, F. Ajustron, J. Beauvillain, Metal/n-CdTe interfaces: a study of electrical contacts by deep level transient spectroscopy and ballistic electron emission microscopy. Solid State Electron. 42, 595–604 (1998). https://doi.org/10.1016/S0038-1101(97)00296-7

    Article  Google Scholar 

  9. H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, Electrodeposition of CdTe thin-films using nitrate precursor for applications in solar cells, J. Mater. Sci. Mater. Electron. 26 (2015) 3119–3128. doi: https://doi.org/10.1007/s10854-015-2805-x.

  10. J.E. Granata, J.R. Sites, Effect of CdS thickness on CdS/CdTe quantum efficiency, in Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. 1996 (2000), pp. 853–856. https://doi.org/10.1109/PVSC.1996.564262

  11. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  12. A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839–846 (2000). https://doi.org/10.1088/0022-3727/13/5/018

    Article  Google Scholar 

  13. J.S. Lee, Y.K. Jun, H.B. Im, Effects of CdS film thickness on the photovoltaic properties of sintered CdS / CdTe solar cells. J. Electrochem. Soc. 134, 248–251 (1987). https://doi.org/10.1149/1.2100417

    Article  Google Scholar 

  14. S.G. Kumar, K.S.R.K. Rao, Physics and chemistry of CdTe/CdS thin-film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 7, 45–102 (2014). https://doi.org/10.1039/C3EE41981A

    Article  Google Scholar 

  15. I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)

    Google Scholar 

  16. I.M. Dharmadasa, J.D. Bunning, A.P. Samantilleke, T. Shen, Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and lifetime of thin-film solar cells. Sol. Energy Mater. Sol. Cells 86, 373–384 (2005). https://doi.org/10.1016/j.solmat.2004.08.009

    Article  Google Scholar 

  17. I.M. Dharmadasa, Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Sol. Energy Mater. Sol. Cells 85, 293–300 (2005). https://doi.org/10.1016/j.solmat.2004.08.008

    Article  Google Scholar 

  18. I.M. Dharmadasa, A.P. Samantilleke, N.B. Chaure, J. Young, New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semicond. Sci. Technol. 17, 1238–1248 (2002). https://doi.org/10.1088/0268-1242/17/12/306

    Article  Google Scholar 

  19. T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier Science, 2006), p. 614. https://www.elsevier.com/books/nanostructured-materials-for-solar-energy-conversion/soga/978-0-444-52844-5

  20. C. Ni, P. Shah, A.M. Sarangan, Effects of different wetting layers on the growth of smooth ultra-thin silver thin-films, in ed. by E.M. Campo, E.A. Dobisz, L.A. Eldada (2014), p. 91700L. https://doi.org/10.1117/12.2061256

  21. T. Yasuda, K. Hara, H. Kukimoto, Low resistivity Al-doped ZnS grown by MOVPE. J. Cryst. Growth 77, 485–489 (1986). https://doi.org/10.1016/0022-0248(86)90341-6

    Article  Google Scholar 

  22. M.L. Madugu, O.I.-O. Olusola, O.K. Echendu, B. Kadem, I.M. Dharmadasa, Intrinsic doping in electrodeposited ZnS thin-films for application in large-area optoelectronic devices. J. Electron. Mater. 45, 2710–2717 (2016). https://doi.org/10.1007/s11664-015-4310-7

    Article  Google Scholar 

  23. T.L. Chu, S.S. Chu, Thin-film II–VI photovoltaics. Solid State Electron. 38, 533–549 (1995). https://doi.org/10.1016/0038-1101(94)00203-R

    Article  Google Scholar 

  24. O. Echendu, I. Dharmadasa, Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films. Energies 8, 4416–4435 (2015). https://doi.org/10.3390/en8054416

    Article  Google Scholar 

  25. X. Liu, Y. Jiang, F. Fu, W. Guo, W. Huang, L. Li, Facile synthesis of high-quality ZnS, CdS, CdZnS, and CdZnS/ZnS core/shell quantum dots: characterization and diffusion mechanism. Mater. Sci. Semicond. Process. 16, 1723–1729 (2013). https://doi.org/10.1016/j.mssp.2013.06.007

    Article  Google Scholar 

  26. J.M. Woodcock, A.K. Turner, M.E. Ozsan, J.G. Summers, Thin-film solar cells based on electrodeposited CdTe, in Conf. Rec. Twenty-Second IEEE Photovolt. Spec. Conf.—1991, IEEE (1991), pp. 842–847. https://doi.org/10.1109/PVSC.1991.169328

  27. K. Zanio, Semiconductors and Semimetals (Academic, New York, 1978). http://shu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3JCsIwEB1cEAQPrrgV-gNKmyZNPYvFu94l6bQ3K1j_HydDXXA5Zg7DJJB5me0FIBLrYPXhE8LEUZ8lRggjsgBlgBuptSqw0Chzrsy80Rg848ZXCuObQZ_iCKmCyN3HJjQJON2LqOaiYzdM7pnQiml0hCaUCiNVM-481sn7lwYMKGkfWm7IYACNvBxCh9sws2o

    Google Scholar 

  28. I.M. Dharmadasa, A.B. McLean, M.H. Patterson, R.H. Williams, Schottky barriers and interface reactions on chemically etched n-CdTe single crystals. Semicond. Sci. Technol. 2, 404–412 (1987). https://doi.org/10.1088/0268-1242/2/7/003

    Article  Google Scholar 

  29. S. Tanaka, J.A. Bruce, M.S. Wrighton, Deliberate modification of the behavior of n-type cadmium telluride/electrolyte interfaces by surface etching. Removal of Fermi level pinning. J. Phys. Chem. 85, 3778–3787 (1981). https://doi.org/10.1021/j150625a015

    Article  Google Scholar 

  30. I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, O.I. Olusola, H.I. Salim, M.L. Madugu, A.A. Ojo, Improvement of composition of CdTe thin-films during heat treatment in the presence of CdCl2. J. Mater. Sci. Mater. Electron. 28, 2343–2352 (2017). https://doi.org/10.1007/s10854-016-5802-9

    Article  Google Scholar 

  31. J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993). https://doi.org/10.1063/1.109629

    Article  Google Scholar 

  32. T. Potlog, L. Ghimpu, P. Gashin, A. Pudov, T. Nagle, J. Sites, Influence of annealing in different chlorides on the photovoltaic parameters of CdS/CdTe solar cells. Sol. Energy Mater. Sol. Cells 80, 327–334 (2003). https://doi.org/10.1016/j.solmat.2003.08.007

    Article  Google Scholar 

  33. N.A. Abdul-Manaf, A.R. Weerasinghe, O.K. Echendu, I.M. Dharmadasa, Electro-plating and characterisation of cadmium sulphide thin-films using ammonium thiosulphate as the sulphur source. J. Mater. Sci. Mater. Electron. 26, 2418–2429 (2015). https://doi.org/10.1007/s10854-015-2700-5

    Article  Google Scholar 

  34. B.E. McCandless, K.D. Dobson, Processing options for CdTe thin-film solar cells. Sol. Energy 77, 839–856 (2004). https://doi.org/10.1016/j.solener.2004.04.012

    Article  Google Scholar 

  35. D.W. Lane, A review of the optical band gap of thin-film CdSxTe 1-x. Sol. Energy Mater. Sol. Cells 90, 1169–1175 (2006). https://doi.org/10.1016/j.solmat.2005.07.003

    Article  Google Scholar 

  36. D.A. Wood, K.D. Rogers, D.W. Lane, D.A. Wood, K.D. Rogers, J.A. Coath, Optical and structural characterization of CdS x Te 1- x thin-films for solar cell applications. J. Phys. Condens. Matter 12, 4433–4450 (2000). https://doi.org/10.1088/0953-8984/12/19/312 http://stacks.iop.org/0953-8984/12/i=19/a=312.

    Article  Google Scholar 

  37. E.Q.B. Macabebe, E.E. van Dyk, Parameter extraction from dark current–voltage characteristics of solar cells. S. Afr. J. Sci. 104, 401–404 (2008). http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532008000500017

    Google Scholar 

  38. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006). https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  39. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovoltaics 4, 1433–1435 (2014). https://doi.org/10.1109/JPHOTOV.2014.2352151

    Article  Google Scholar 

  40. B.M. Basol, Processing high efficiency CdTe solar cells. Int. J. Sol. Energy 12, 25–35 (1992). https://doi.org/10.1080/01425919208909748

    Article  Google Scholar 

  41. S. Mazzamuto, L. Vaillant, A. Bosio, N. Romeo, N. Armani, G. Salviati, A study of the CdTe treatment with a Freon gas such as CHF2Cl. Thin Solid Films 516, 7079–7083 (2008). https://doi.org/10.1016/j.tsf.2007.12.124

    Article  Google Scholar 

  42. J.D. Major, L. Bowen, R.E. Treharne, L.J. Phillips, K. Durose, NH 4 Cl alternative to the CdCl 2 treatment step for CdTe thin-film solar cells. IEEE J. 5, 386–389 (2015). https://doi.org/10.1109/JPHOTOV.2014.2362296

    Article  Google Scholar 

  43. B. Maniscalco, A. Abbas, J.W. Bowers, P.M. Kaminski, K. Bass, G. West, J.M. Walls, The activation of thin-film CdTe solar cells using alternative chlorine containing compounds. Thin Solid Films 582, 115–119 (2015). https://doi.org/10.1016/j.tsf.2014.10.059

    Article  Google Scholar 

  44. B.E. McCandless, I. Youm, R.W. Birkmire, Optimization of vapor post-deposition processing for evaporated CdS/CdTe solar cells. Prog. Photovolt. Res. Appl. 7, 21–30 (1999). https://doi.org/10.1002/(SICI)1099-159X(199901/02)7:1<21::AID-PIP244>3.0.CO;2-D

    Article  Google Scholar 

  45. H. Bayhan, C. Ercelebi, Effects of post deposition treatments on vacuum evaporated CdTe thin-films and CdS/CdTe heterojunction devices. Turk. J. Phys. 22, 441–451 (1998). http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0347537252&partnerID=40&rel=R6.5.0

    Google Scholar 

  46. I.M. Dharmadasa, J.M. Thornton, R.H. Williams, Effects of surface treatments on Schottky barrier formation at metal/n-type CdTe contacts. Appl. Phys. Lett. 54, 137 (1989). https://doi.org/10.1063/1.101208

    Article  Google Scholar 

  47. V. Krishnakumar, J. Han, A. Klein, W. Jaegermann, CdTe thin-film solar cells with reduced CdS film thickness. Thin Solid Films 519, 7138–7141 (2011). https://doi.org/10.1016/j.tsf.2010.12.118

    Article  Google Scholar 

  48. G. Carotenuto, M. Palomba, S. De Nicola, G. Ambrosone, U. Coscia, Structural and photoconductivity properties of tellurium/PMMA films. Nanoscale Res. Lett. 10, 1007 (2015). https://doi.org/10.1186/s11671-015-1007-z

    Article  Google Scholar 

  49. B. Abad, M. Rull-Bravo, S.L. Hodson, X. Xu, M. Martin-Gonzalez, Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect. Electrochim. Acta 169, 37–45 (2015). https://doi.org/10.1016/j.electacta.2015.04.063

    Article  Google Scholar 

  50. S. Chun, S. Lee, Y. Jung, J.S. Bae, J. Kim, D. Kim, Wet chemical etched CdTe thin-film solar cells. Curr. Appl. Phys. 13, 211–216 (2013). https://doi.org/10.1016/j.cap.2012.07.015

    Article  Google Scholar 

  51. Z.H. Chen, C.P. Liu, H.E. Wang, Y.B. Tang, Z.T. Liu, W.J. Zhang, S.T. Lee, J.A. Zapien, I. Bello, Electronic structure at the interfaces of vertically aligned zinc oxide nanowires and sensitizing layers in photochemical solar cells. J. Phys. D. Appl. Phys. 44, 325108 (2011). https://doi.org/10.1088/0022-3727/44/32/325108

    Article  Google Scholar 

  52. Y. Shan, J.-J. Xu, H.-Y. Chen, Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Nanoscale 3, 2916 (2011). https://doi.org/10.1039/c1nr10175g

    Article  Google Scholar 

  53. N.A. Abdul-Manaf, H.I. Salim, M.L. Madugu, O.I. Olusola, I.M. Dharmadasa, Electro-plating and characterisation of CdTe thin-films using CdCl2 as the cadmium source. Energies 8, 10883–10903 (2015). https://doi.org/10.3390/en81010883

    Article  Google Scholar 

  54. P.J. Sellin, A.W. Dazvies, A. Lohstroh, M.E. Özsan, J. Parkin, Drift mobility and mobility-lifetime products in CdTe:Cl grown by the travelling heater method. IEEE Trans. Nucl. Sci. 52, 3074–3078 (2005). https://doi.org/10.1109/TNS.2005.855641

    Article  Google Scholar 

  55. J. Verschraegen, M. Burgelman, J. Penndorf, Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480–481, 307–311 (2005). https://doi.org/10.1016/j.tsf.2004.11.006

    Article  Google Scholar 

  56. R.B. Godfrey, M.A. Green, Enhancement of MIS solar-cell “efficiency” by peripheral collection. Appl. Phys. Lett. 31, 705–707 (1977). https://doi.org/10.1063/1.89487

    Article  Google Scholar 

  57. I.M. Dharmadasa, A.A. Ojo, H.I. Salim, R. Dharmadasa, Next generation solar cells based on graded bandgap device structures utilising rod-type nano-materials. Energies 8, 5440–5458 (2015). https://doi.org/10.3390/en8065440

    Article  Google Scholar 

  58. D. Congreve, J. Lee, N. Thompson, E. Hontz, External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 340, 334–337 (2013). https://doi.org/10.1126/science.1232994

    Article  Google Scholar 

  59. N.J.L.K. Davis, M.L. Bohm, M. Tabachnyk, F. Wisnivesky-Rocca-Rivarola, T.C. Jellicoe, C. Ducati, B. Ehrler, N.C. Greenham, Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 81–87 (2015). https://doi.org/10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  60. I. Strzalkowski, S. Joshi, C.R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28, 350–352 (1976). https://doi.org/10.1063/1.88755

    Article  Google Scholar 

  61. B.M. Basol, B. McCandless, Brief review of cadmium telluride-based photovoltaic technologies. J. Photonics Energy. 4, 40996 (2014). https://doi.org/10.1117/1.JPE.4.040996

    Article  Google Scholar 

  62. M. Gloeckler, I. Sankin, Z. Zhao, CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovoltaics 3, 1389–1393 (2013). https://doi.org/10.1109/JPHOTOV.2013.2278661

    Article  Google Scholar 

  63. T.J. Coutts, S. Naseem, High efficiency indium tin oxide/indium phosphide solar cells. Appl. Phys. Lett. 46, 164–166 (1985). https://doi.org/10.1063/1.95723

    Article  Google Scholar 

  64. H. Liu, Y. Tian, Y. Zhang, K. Gao, K. Lu, R. Wu, D. Qin, H. Wu, Z. Peng, L. Hou, W. Huang, Solution processed CdTe/CdSe nanocrystal solar cells with more than 5.5% efficiency by using an inverted device structure. J. Mater. Chem. C 3, 4227–4234 (2015). https://doi.org/10.1039/C4TC02816C

    Article  Google Scholar 

  65. H. Xue, R. Wu, Y. Xie, Q. Tan, D. Qin, H. Wu, W. Huang, Recent progress on solution-processed CdTe nanocrystals solar cells. Appl. Sci. 6, 197 (2016). https://doi.org/10.3390/app6070197

    Article  Google Scholar 

  66. I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, H.I. Salim, T. Druffel, R. Dharmadasa, B. Lavery, Effects of CdCl2 treatment on deep levels in CdTe and their implications on thin-film solar cells: a comprehensive photoluminescence study. J. Mater. Sci. Mater. Electron. 26, 4571–4583 (2015). https://doi.org/10.1007/s10854-015-3090-4

    Article  Google Scholar 

  67. N.V.V. Sochinskii, V.N.N. Babentsov, N.I.I. Tarbaev, M.D. Serrano, E. Dieguez, The low temperature annealing of p-cadmium telluride in gallium-bath. Mater. Res. Bull. 28, 1061–1066 (1993). https://doi.org/10.1016/0025-5408(93)90144-3

    Article  Google Scholar 

  68. J.C. Tranchart, P. Bach, A gas bearing system for the growth of CdTe. J. Cryst. Growth 32, 8–12 (1976). https://doi.org/10.1016/0022-0248(76)90003-8

    Article  Google Scholar 

  69. J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95, 816–820 (2011). https://doi.org/10.1016/j.solmat.2010.10.027

    Article  Google Scholar 

  70. T. Toyama, K. Matsune, H. Oda, M. Ohta, H. Okamoto, X-ray diffraction study of CdS/CdTe heterostructure for thin-film solar cell: influence of CdS grain size on subsequent growth of (111)-oriented CdTe film. J. Phys. D. Appl. Phys. 39, 1537–1542 (2006). https://doi.org/10.1088/0022-3727/39/8/013

    Article  Google Scholar 

  71. I.M. Dharmadasa, P. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G. Sumanasekera, R. Dharmasena, M.B. Dergacheva, K. Mit, K. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin-film solar cells using an electrochemical technique. Coatings 4, 380–415 (2014). https://doi.org/10.3390/coatings4030380

    Article  Google Scholar 

  72. A. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  Google Scholar 

  73. T.M. Razykov, N. Amin, B. Ergashev, C.S. Ferekides, D.Y. Goswami, M.K. Hakkulov, K.M. Kouchkarov, K. Sopian, M.Y. Sulaiman, M. Alghoul, H.S. Ullal, Effect of CdCl2 treatment on physical properties of CdTe films with different compositions fabricated by chemical molecular beam deposition. Appl. Sol. Energy 49, 35–39 (2013). https://doi.org/10.3103/S0003701X1301009X

    Article  Google Scholar 

  74. J.D. Major, R.E. Treharne, L.J. Phillips, K. Durose, A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 511, 334–337 (2014). https://doi.org/10.1038/nature13435

    Article  Google Scholar 

  75. T.L. Chu, S.S. Chu, C. Ferekides, J. Britt, C.Q. Wu, Thin-film junctions of cadmium telluride by metalorganic chemical vapor deposition. J. Appl. Phys. 71, 3870–3876 (1992). https://doi.org/10.1063/1.350852

    Article  Google Scholar 

  76. T. Ferid, M. Saji, Transport properties in gallium doped CdTe MOVPE layers. J. Cryst. Growth 172, 83–88 (1997). https://doi.org/10.1016/S0022-0248(96)00740-3

    Article  Google Scholar 

  77. I.M. Dharmadasa, A.A. Ojo, Unravelling complex nature of CdS/CdTe based thin-film solar cells. J. Mater. Sci. Mater. Electron. 28, 16598–16617 (2017). https://doi.org/10.1007/s10854-017-7615-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojo, A.A., Cranton, W.M., Dharmadasa, I.M. (2019). Solar Cell Fabrication and Characterisation. In: Next Generation Multilayer Graded Bandgap Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-96667-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96667-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96666-3

  • Online ISBN: 978-3-319-96667-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics