Skip to main content

ZnS Deposition and Characterisation

  • Chapter
  • First Online:
Next Generation Multilayer Graded Bandgap Solar Cells

Abstract

Zinc sulphide (ZnS) layers have been used as buffer layers in the solar cells described in this book, and this chapter provides an insight into the electrodeposition of ZnS layers. Electrodeposition of zinc sulphide (ZnS) was achieved from an electrolytic bath containing zinc sulphate monohydrate (ZnSO4 ·H2O) and ammonium thiosulphate ((NH4)2S2O3) in a two-electrode electroplating configuration. Cyclic voltammetric studies show that ZnS layers can be electroplated between 1350 and 1550 mV. The grown layers were characterised for their structural, optical, morphological and electronic properties using X-ray diffraction (XRD) and Raman spectroscopy, UV-visible spectrophotometry, scanning electron microscopy (SEM), photoelectrochemical (PEC) cell and DC conductivity measurements, respectively. The structural analyses show that crystalline ZnS can be deposited within a narrow cathodic deposition range between 1420 and 1430 mV. UV-visible spectrophotometry shows that the bandgap of both as-deposited and heat-treated ZnS films is in the range of ~(3.70 and 3.90) eV. The SEM shows small grains in the ZnS layer and the full coverage of the underlying substrate by the film. PEC results show that the electroplated ZnS layers grown below 1425 mV are p-type and above 1425 mV are n-type under both as-deposited and heat-treated condition. DC conductivity shows that the highest resistivity is at the inversion growth voltage (V i) for the ZnS layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Nakada, M. Mizutani, 18% Efficiency Cd-free Cu(In, Ga)Se 2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Jpn. J. Appl. Phys. 41, L165 (2002). http://stacks.iop.org/1347-4065/41/i=2B/a=L165

    Article  Google Scholar 

  2. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006). https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  3. J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993). https://doi.org/10.1063/1.109629

    Article  Google Scholar 

  4. T.L. Chu, S.S. Chu, C. Ferekides, C.Q. Wu, J. Britt, C. Wang, 13.4% Efficient thin-film CdS/CdTe solar cells. J. Appl. Phys. 70, 7608 (1991). https://doi.org/10.1063/1.349717.

    Article  Google Scholar 

  5. J.E. Granata, J.R. Sites, in Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf. 1996. Effect of CdS thickness on CdS/CdTe quantum efficiency (2000), pp. 853–856. https://doi.org/10.1109/PVSC.1996.564262

    Chapter  Google Scholar 

  6. A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, F. Karg, Highly efficient Cu(Ga,In)(S,Se)2 thin film solar cells with zinc-compound buffer layers. Thin Solid Films. 431–432, 335–339 (2003). https://doi.org/10.1016/S0040-6090(03)00155-X

    Article  Google Scholar 

  7. A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017). https://doi.org/10.1007/s10854-016-5916-0

    Article  Google Scholar 

  8. J. Hu, G. Wang, C. Guo, D. Li, L. Zhang, J. Zhao, Au-catalyst growth and photoluminescence of zinc-blende and wurtzite ZnS nanobelts via chemical vapor deposition. J. Lumin. 122–123, 172–175 (2007). https://doi.org/10.1016/j.jlumin.2006.01.074

    Article  Google Scholar 

  9. A.N. Yazici, M. Öztaş, M. Bedır, Effect of sample producing conditions on the thermoluminescence properties of ZnS thin films developed by spray pyrolysis method. J. Lumin. 104, 115–122 (2003). https://doi.org/10.1016/S0022-2313(02)00686-5

    Article  Google Scholar 

  10. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, Electrodeposited ZnS precursor layer with improved electrooptical properties for efficient Cu2ZnSnS4 thin-film solar cells. J. Electron. Mater. 44, 3380–3387 (2015). https://doi.org/10.1007/s11664-015-3849-7

    Article  Google Scholar 

  11. I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)

    Google Scholar 

  12. S. Tec-Yam, J. Rojas, V. Rejón, A.I. Oliva, High quality antireflective ZnS thin films prepared by chemical bath deposition. Mater. Chem. Phys. 136, 386–393 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.063.

    Article  Google Scholar 

  13. G.L. Agawane, S.W. Shin, A.V. Moholkar, K.V. Gurav, J.H. Yun, J.Y. Lee, J.H. Kim, Non-toxic complexing agent Tri-sodium citrate’s effect on chemical bath deposited ZnS thin films and its growth mechanism. J. Alloys Compd. 535, 53–61 (2012). https://doi.org/10.1016/j.jallcom.2012.04.073

    Article  Google Scholar 

  14. B.W. Sanders, A.H. Kitai, The electrodeposition of thin film zinc sulphide from thiosulphate solution. J. Cryst. Growth. 100, 405–410 (1990). https://doi.org/10.1016/0022-0248(90)90238-G

    Article  Google Scholar 

  15. O.K. Echendu, I.M. Dharmadasa, Effects of thickness and annealing on optoelectronic properties of electrodeposited ZnS thin films for photonic device applications. J. Electron. Mater. 43, 791–801 (2013). https://doi.org/10.1007/s11664-013-2943-y

    Article  Google Scholar 

  16. M.L. Madugu, O.I.-O. Olusola, O.K. Echendu, B. Kadem, I.M. Dharmadasa, Intrinsic doping in electrodeposited ZnS thin films for application in large-area optoelectronic devices. J. Electron. Mater. 45, 2710–2717 (2016). https://doi.org/10.1007/s11664-015-4310-7

    Article  Google Scholar 

  17. A. Fairbrother, V. Izquierdo-Roca, X. Fontané, M. Ibáñez, A. Cabot, E. Saucedo, A. Pérez-Rodríguez, ZnS grain size effects on near-resonant Raman scattering: optical non-destructive grain size estimation. CrystEngComm. 16, 4120 (2014). https://doi.org/10.1039/c3ce42578a

    Article  Google Scholar 

  18. Y. Ebisuzaki, M. Nicol, Raman spectrum of hexagonal zinc sulfide at high pressures. J. Phys. Chem. Solids. 33, 763–766 (1972). https://doi.org/10.1016/0022-3697(72)90088-1

    Article  Google Scholar 

  19. H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981). https://doi.org/10.1016/0038-1098(81)90337-9

    Article  Google Scholar 

  20. I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986). https://doi.org/10.1016/0038-1098(86)90513-2

    Article  Google Scholar 

  21. A.B. Bhalerao, C.D. Lokhande, B.G. Wagh, Photoelectrochemical cell based on electrodeposited nanofibrous ZnS thin film. IEEE Trans. Nanotechnol. 12, 996–1001 (2013). https://doi.org/10.1109/TNANO.2013.2272469

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojo, A.A., Cranton, W.M., Dharmadasa, I.M. (2019). ZnS Deposition and Characterisation. In: Next Generation Multilayer Graded Bandgap Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-96667-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96667-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96666-3

  • Online ISBN: 978-3-319-96667-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics