Skip to main content

Temporal Data Management – An Overview

  • Conference paper
  • First Online:
Business Intelligence and Big Data (eBISS 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 324))

Included in the following conference series:

Abstract

Despite the ubiquity of temporal data and considerable research on the effective and efficient processing of such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in the processing of temporal data that captures multiple states of reality. The SQL:2011 standard incorporates some temporal support, and commercial DBMSs have started to offer temporal functionality in a step-by-step manner, such as the representation of temporal intervals, temporal primary and foreign keys, and the support for so-called time-travel queries that enable access to past states.

This tutorial gives an overview of state-of-the-art research results and technologies for storing, managing, and processing temporal data in relational database management systems. Following an introduction that offers a historical perspective, we provide an overview of basic temporal database concepts. Then we survey the state-of-the-art in temporal database research, followed by a coverage of the support for temporal data in the current SQL standard and the extent to which the temporal aspects of the standard are supported by existing systems. The tutorial ends by covering a recently proposed framework that provides comprehensive support for processing temporal data and that has been implemented in PostgreSQL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To comply with the SQL:2011 standard, in this section we use closed-open intervals, whereas in the other sections we use closed-closed intervals.

  2. 2.

    To keep the examples simple, we use only the year, not complete dates or timestamps.

References

  1. Agesen, M., Böhlen, M.H., Poulsen, L., Torp, K.: A split operator for now-relative bitemporal databases. In: Proceedings of the 17th International Conference on Data Engineering, ICDE 2001, pp. 41–50 (2001)

    Google Scholar 

  2. Al-Kateb, M., Ghazal, A., Crolotte, A.: An efficient SQL rewrite approach for temporal coalescing in the teradata RDBMS. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012. LNCS, vol. 7447, pp. 375–383. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32597-7_32

    Chapter  Google Scholar 

  3. Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode, J., Pakala, S.P.: Temporal query processing in teradata. In: Proceedings of the 16th International Conference on Extending Database Technology, EDBT 2013, pp. 573–578 (2013)

    Google Scholar 

  4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  Google Scholar 

  5. Arbesman, S.: Stop hyping big data and start paying attention to ‘long data’. Wired.com (2013). https://www.wired.com/2013/01/forget-big-data-think-long-data/

  6. Bair, J., Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Notions of upward compatibility of temporal query languages. Wirtschaftsinformatik 39(1), 25–34 (1997)

    Google Scholar 

  7. Behrend, A., et al.: Temporal state management for supporting the real-time analysis of clinical data. In: Bassiliades, N., et al. (eds.) New Trends in Database and Information Systems II. AISC, vol. 312, pp. 159–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10518-5_13

    Chapter  Google Scholar 

  8. Ben-Gan, I., Sarka, D., Wolter, R., Low, G., Katibah, E., Kunen, I.: Inside Microsoft SQL Server 2008 T-SQL programming, Chap. 12. In: Temporal Support in the Relational Model. Microsoft Press (2008)

    Google Scholar 

  9. Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04228-1

    Book  MATH  Google Scholar 

  10. Bettini, C., Sean Wang, X., Jajodia, S.: Temporal granularity. In: Liu and Özsu [60], pp. 2968–2973

    Google Scholar 

  11. Böhlen, M.H., Gamper, J., Jensen, C.S.: An algebraic framework for temporal attribute characteristics. Ann. Math. Artif. Intell. 46(3), 349–374 (2006)

    Article  MathSciNet  Google Scholar 

  12. Böhlen, M.H., Gamper, J., Jensen, C.S.: How would you like to aggregate your temporal data? In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning, TIME 2006, pp. 121–136 (2006)

    Google Scholar 

  13. Böhlen, M., Gamper, J., Jensen, C.S.: Multi-dimensional aggregation for temporal data. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 257–275. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_18

    Chapter  Google Scholar 

  14. Böhlen, M.H., Jensen, C.S.: Temporal data model and query language concepts. In: Encyclopedia of Information Systems, pp. 437–453. Elsevier (2003)

    Chapter  Google Scholar 

  15. Böhlen, M.H., Jensen, C.S.: Sequenced semantics. In: Liu and Özsu [60], pp. 2619–2621

    Google Scholar 

  16. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Temporal statement modifiers. ACM Trans. Database Syst. 25(4), 407–456 (2000)

    Article  Google Scholar 

  17. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Current semantics. In: Liu and Özsu [60], pp. 544–545

    Google Scholar 

  18. Böhlen, M.H., Jensen, C.S., Snodgrass, R.T.: Nonsequenced semantics. In: Liu and Özsu [60], pp. 1913–1915

    Google Scholar 

  19. Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: Proceedings of 22th International Conference on Very Large Data Bases, VLDB 1996, pp. 180–191 (1996)

    Google Scholar 

  20. Cohen Boulakia, S., Tan, W.C.: Provenance in scientific databases. In: Liu and Özsu [60], pp. 2202–2207

    Google Scholar 

  21. Bouros, P., Mamoulis, N.: A forward scan based plane sweep algorithm for parallel interval joins. PVLDB 10(11), 1346–1357 (2017)

    Google Scholar 

  22. Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. VLDB J. 26(3), 447–466 (2017)

    Article  Google Scholar 

  23. Chomicki, J., Toman, D., Böhlen, M.H.: Querying ATSQL databases with temporal logic. ACM Trans. Database Syst. 26(2), 145–178 (2001)

    Article  Google Scholar 

  24. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)

    Article  Google Scholar 

  25. Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier (2002)

    Google Scholar 

  26. Davis, J.: Online temporal PostgreSQL reference (2009). http://temporal.projects.postgresql.org/reference.html

  27. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, pp. 433–444 (2012)

    Google Scholar 

  28. Dignös, A., Böhlen, M.H., Gamper, J.: Query time scaling of attribute values in interval timestamped databases. In: Proceedings of the 29th International Conference on Data Engineering, ICDE 2013, pp. 1304–1307 (2013)

    Google Scholar 

  29. Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition join. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2014, pp. 1459–1470 (2014)

    Google Scholar 

  30. Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst. 41(4), 26:1–26:46 (2016)

    Article  MathSciNet  Google Scholar 

  31. Dyreson, C.E.: Chronon. In: Liu and Özsu [60], p. 329

    Google Scholar 

  32. Dyreson, C.E., Jensen, C.S., Snodgrass, R.T.: Now in temporal databases. In: Liu and Özsu [60], pp. 1920–1924

    Google Scholar 

  33. Dyreson, C.E., Lin, H., Wang, Y.: Managing versions of web documents in a transaction-time web server. In: Proceedings of the 13th International Conference on World Wide Web, WWW 2004, pp. 422–432 (2004)

    Google Scholar 

  34. Dyreson, C.E., Rani, V.A.: Translating temporal SQL to nested SQL. In: Proceedings of the 23rd International Symposium on Temporal Representation and Reasoning, TIME 2016, pp. 157–166 (2016)

    Google Scholar 

  35. Dyreson, C.E., Rani, V.A., Shatnawi, A.: Unifying sequenced and non-sequenced semantics. In: Proceedings of the 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015, pp. 38–46 (2015)

    Google Scholar 

  36. Jensen, C.S., Clifford, J., Gadia, S.K., Grandi, F., Kalua, P.P., Kline, N., Lorentzos, N., Mitsopoulos, Y., Montanari, A., Nair, S.S., Peressi, E., Pernici, B., Robertson, E.L., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snodgrass, R.T., Tansel, A., Tiberio, P., Tuzhilin, A., Wuu, G.T.J.: A consensus test suite of temporal database queries. Technical report R 93–2034, Aalborg University, Department of Mathematics and Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark, November 1993

    Google Scholar 

  37. Etzion, O., Jajodia, S., Sripada, S. (eds.): Temporal Databases: Research and Practice. LNCS, vol. 1399. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053695

    Book  Google Scholar 

  38. Gadia, S.K.: A homogeneous relational model and query languages for temporal databases. ACM Trans. Database Syst. 13(4), 418–448 (1988)

    Article  MathSciNet  Google Scholar 

  39. Gadia, S.K., Yeung, C.-S.: A generalized model for a relational temporal database. In: Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data, SIGMOD 1988, pp. 251–259 (1988)

    Article  Google Scholar 

  40. Galton, A.: A critical examination of Allen’s theory of action and time. Artif. Intell. 42(2–3), 159–188 (1990)

    Article  MathSciNet  Google Scholar 

  41. Gamper, J., Böhlen, M.H., Jensen, C.S.: Temporal aggregation. In: Liu and Özsu [60], pp. 2924–2929

    Google Scholar 

  42. Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations in temporal databases. VLDB J. 14(1), 2–29 (2005)

    Article  Google Scholar 

  43. Gao, D., Snodgrass, R.T.: Temporal slicing in the evaluation of XML queries. In: Proceedings of the 29th International Conference on Very Large Data Bases, VLDB 2003, pp. 632–643 (2003)

    Chapter  Google Scholar 

  44. Grandi, F.: Temporal databases. In: Encyclopedia of Information Science and Technology, 3rd edn., pp. 1914–1922. IGI Global (2015)

    Google Scholar 

  45. Grandi, F., Mandreoli, F., Martoglia, R., Penzo, W.: A relational algebra for streaming tables living in a temporal database world. In: Proceedings of the 24th International Symposium on Temporal Representation and Reasoning, TIME 2017, pp. 15:1–15:17 (2017)

    Google Scholar 

  46. Grandi, F., Mandreoli, F., Tiberio, P.: Temporal modelling and management of normative documents in XML format. Data Knowl. Eng. 54(3), 327–354 (2005)

    Article  Google Scholar 

  47. Jensen, C.S., Dyreson, C.E., Böhlen, M.H., Clifford, J., Elmasri, R., Gadia, S.K., Grandi, F., Hayes, P.J., Jajodia, S., Käfer, W., Kline, N., Lorentzos, N.A., Mitsopoulos, Y.G., Montanari, A., Nonen, D.A., Peressi, E., Pernici, B., Roddick, J.F., Sarda, N.L., Scalas, M.R., Segev, A., Snodgrass, R.T., Soo, M.D., Uz Tansel, A., Tiberio, P., Wiederhold, G.: The consensus glossary of temporal database concepts. In Temporal Databases, Dagstuhl, pp. 367–405 (1997)

    Google Scholar 

  48. Jensen, C.S., Snodgrass, R.T.: Snapshot equivalence. In: Liu and Özsu [60], p. 2659

    Google Scholar 

  49. Jensen, C.S., Snodgrass, R.T.: Temporal data models. In: Liu and Özsu [60], pp. 2952–2957

    Google Scholar 

  50. Jensen, C.S., Snodgrass, R.T.: Temporal element. In: Liu and Özsu [60], p. 2966

    Google Scholar 

  51. Jensen, C.S., Snodgrass, R.T.: Time instant. In: Liu and Özsu [60], p. 3112

    Google Scholar 

  52. Jensen, C.S., Snodgrass, R.T.: Timeslice operator. In: Liu and Özsu [60], pp. 3120–3121

    Google Scholar 

  53. Jensen, C.S., Snodgrass, R.T.: Transaction time. In: Liu and Özsu [60], pp. 3162–3163

    Google Scholar 

  54. Jensen, C.S., Snodgrass, R.T.: Valid time. In: Liu and Özsu [60], pp. 3253–3254

    Google Scholar 

  55. Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F., May, N.: Timeline index: a unified data structure for processing queries on temporal data in SAP HANA. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, pp. 1173–1184 (2013)

    Google Scholar 

  56. Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D., Färber, F.: Comprehensive and interactive temporal query processing with SAP HANA. PVLDB 6(12), 1210–1213 (2013)

    Google Scholar 

  57. Kline, N., Snodgrass, R.T.: Computing temporal aggregates. In: Proceedings of the 11th International Conference on Data Engineering, ICDE 1995, pp. 222–231 (1995)

    Google Scholar 

  58. Kulkarni, K.G., Michels, J.-E.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43 (2012)

    Article  Google Scholar 

  59. Künzner, F., Petković, D.: A comparison of different forms of temporal data management. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 92–106. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18422-7_8

    Chapter  Google Scholar 

  60. Liu, L., Tamer Özsu, M. (eds.): Encyclopedia of Database Systems. Springer, Boston (2009)

    MATH  Google Scholar 

  61. López, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)

    Article  Google Scholar 

  62. Lorentzos, N.A.: Time period. In: Liu and Özsu [60], p. 3113

    Google Scholar 

  63. Lorentzos, N.A., Mitsopoulos, Y.G.: SQL extension for interval data. IEEE Trans. Knowl. Data Eng. 9(3), 480–499 (1997)

    Article  Google Scholar 

  64. Microsoft. SQL Server 2016 - temporal tables (2016). https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables

  65. Moffitt, V.Z., Stoyanovich, J.: Towards sequenced semantics for evolving graphs. In: Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, pp. 446–449 (2017)

    Google Scholar 

  66. Montanari, A., Chomicki, J.: Time domain. In: Liu and Özsu [60], pp. 3103–3107

    Google Scholar 

  67. Moon, B., López, I.F.V., Immanuel, V.: Efficient algorithms for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744–759 (2003)

    Article  Google Scholar 

  68. Murray, C.: Oracle database workspace manager developer’s guide (2008). http://download.oracle.com/docs/cd/B28359_01/appdev.111/b28396.pdf

  69. Oracle. Database development guide - temporal validity support (2016). https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967

  70. Papaioannou, K., Böhlen, M.H.: TemProRA: top-k temporal-probabilistic results analysis. In: Proceedings of the 32nd IEEE International Conference on Data Engineering, ICDE 2016, pp. 1382–1385 (2016)

    Google Scholar 

  71. Persia, F., Bettini, F., Helmer, S.: An interactive framework for video surveillance event detection and modeling. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pp. 2515–2518 (2017)

    Google Scholar 

  72. Petković, D.: Modern temporal data models: strengths and weaknesses. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015. CCIS, vol. 521, pp. 136–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18422-7_12

    Chapter  Google Scholar 

  73. Petkovic, Dušan: Temporal data in relational database systems: a comparison. In: Rocha, Á., Correia, A.M., Adeli, H., Teixeira, M.M., Reis, L.P. (eds.) New Advances in Information Systems and Technologies. AISC, vol. 444, pp. 13–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31232-3_2

    Chapter  Google Scholar 

  74. Piatov, D., Helmer, S.: Sweeping-based temporal aggregation. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp. 125–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64367-0_7

    Chapter  Google Scholar 

  75. Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware. In: Proceedings of the 32nd International Conference on Data Engineering, ICDE 2016, pp. 1098–1109 (2016)

    Google Scholar 

  76. Pitoura, E.: Historical graphs: models, storage, processing. In: Zimányi, E. (ed.) eBISS 2017. LNBIP, vol. 324, pp. 84–111. Springer, Cham (2017)

    Google Scholar 

  77. PostgreSQL Global Development Group. Documentation manual PostgreSQL - range types (2012). http://www.postgresql.org/docs/9.2/static/rangetypes.html

  78. Rolland, C., Bodart, F., Léonard, M. (eds.) Proceedings of the IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Information Systems (1988)

    Google Scholar 

  79. Saracco, C., Nicola, M., Gandhi, L.: A matter of time: Temporal data management in DB2 10 (2012). http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf

  80. Snodgrass, R.T. (ed.): Proceedings of the International Workshop on an Infrastructure for Temporal Databases (1993)

    Google Scholar 

  81. Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer (1995)

    Google Scholar 

  82. Snodgrass, R.T. (ed.): A Case Study of Temporal Data. Teradata Corporation (2010)

    Google Scholar 

  83. Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Adding valid time to SQL/temporal. Technical report ANSI-96-501r2, October 1996

    Google Scholar 

  84. Snodgrass, R.T., Böhlen, M.H., Jensen, C.S., Steiner, A.: Transitioning temporal support in TSQL2 to SQL3. In: Temporal Databases, Dagstuhl, pp. 150–194 (1997)

    Chapter  Google Scholar 

  85. Son, D., Elmasri, R.: Efficient temporal join processing using time index. In: Proceedings of the 8th International Conference on Scientific and Statistical Database Management, SSDBM 1996, pp. 252–261 (1996)

    Google Scholar 

  86. Soo, M.D., Jensen, C.S., Snodgrass, R.T.: An algebra for TSQL2. In: The TSQL2 Temporal Query Language, Chap. 27, pp. 501–544. Kluwer (1995)

    Chapter  Google Scholar 

  87. Uz Tansel, A., Clifford, J., Gadia, S.K., Jajodia, S., Segev, A., Snodgrass, R.T. (eds.): Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings (1993)

    Google Scholar 

  88. Tao, Y., Papadias, D., Faloutsos, C.: Approximate temporal aggregation. In: Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, pp. 190–201 (2004)

    Google Scholar 

  89. Teradata. Teradata database 13.10 - temporal table support (2010). http://www.info.teradata.com/download.cfm?ItemID=1005295

  90. Teradata. Teradata database 14.10 - temporal table support (2014). http://www.info.teradata.com/eDownload.cfm?itemid=131540028

  91. Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based semantics in temporal relational databases: a treatment of the telic/atelic distinction. IEEE Trans. Knowl. Data Eng. 16(5), 540–551 (2004)

    Article  Google Scholar 

  92. Toman, D.: Point vs. interval-based query languages for temporal databases. In: Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1996, pp. 58–67 (1996)

    Google Scholar 

  93. Toman, D.: Point-based temporal extensions of SQL and their efficient implementation. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Databases: Research and Practice. LNCS, vol. 1399, pp. 211–237. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053704

    Chapter  Google Scholar 

  94. Tuma, P.A.: Implementing Historical Aggregates in TempIS. Ph.D. thesis, Wayne State University (1992)

    Google Scholar 

  95. Yang, J., Widom, J.: Incremental computation and maintenance of temporal aggregates. VLDB J. 12(3), 262–283 (2003)

    Article  Google Scholar 

  96. Zemke, F.: Whats new in SQL: 2011. SIGMOD Rec. 41(1), 67–73 (2012)

    Article  Google Scholar 

  97. Zhang, D., Markowetz, A., Tsotras, V.J., Gunopulos, D., Seeger, B.: Efficient computation of temporal aggregates with range predicates. In: Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 2001 (2001)

    Google Scholar 

  98. Zhang, D., Tsotras, V.J., Seeger, B.: Efficient temporal join processing using indices. In: Proceedings of the 18th International Conference on Data Engineering, ICDE 2002, pp. 103–113 (2002)

    Google Scholar 

  99. Zhou, X., Wang, F., Zaniolo, C.: Efficient temporal coalescing query support in relational database systems. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 676–686. Springer, Heidelberg (2006). https://doi.org/10.1007/11827405_66

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Gamper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S. (2018). Temporal Data Management – An Overview. In: Zimányi, E. (eds) Business Intelligence and Big Data. eBISS 2017. Lecture Notes in Business Information Processing, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-319-96655-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96655-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96654-0

  • Online ISBN: 978-3-319-96655-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics