Skip to main content

Extended Finite Elements Method for Fluid-Structure Interaction with an Immersed Thick Non-linear Structure

  • Chapter
  • First Online:
Mathematical and Numerical Modeling of the Cardiovascular System and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 16))

Abstract

We consider an Extended Finite Element method to solve fluid-structure interaction problems in the case of an immersed thick structure described by non-linear finite elasticity. This method, that belongs to the family of the Cut Finite Element methods, allows to consider unfitted meshes for the fluid and solid domains by maintaining the fluid mesh fixed in time as the solid moves. We review the state of the art about the numerical methods for fluid-structure interaction problems and we present an overview of the Cut Finite Element methods. We describe the numerical discretization proposed here to handle the case of a thick immersed structure with size comparable or smaller than the fluid mesh element size in the case of non-linear finite elasticity. Finally, we present some three-dimensional numerical results of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alauzet, F., Fabrèges, B., Fernández, M.A., Landajuela, M.: Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput. Methods Appl. Mech. Eng. 301, 300–335 (2016)

    Article  MathSciNet  Google Scholar 

  2. Aletti, M., Gerbeau, J.-F., Lombardi, D.: Modeling autoregulation in three-dimensional simulations of retinal hemodynamics. J. Model. Ophthalmol. 1, 88–115 (2015)

    Google Scholar 

  3. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228, 44–54 (2012)

    Article  MathSciNet  Google Scholar 

  4. Arciero, J., Harris, A., Siesky, B., Amireskandari, A., Gershuny, V., Pickrell, A., Guidoboni, G.: Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation mechanisms contributing to retinal autoregulation. Invest. Ophthalmol. Vis. Sci. 54(8), 5584–5593 (2013)

    Article  Google Scholar 

  5. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)

    Article  MathSciNet  Google Scholar 

  6. Astorino, M., Gerbeau, J.-F., Pantz, O., Traoré, K.-F.: Fluid-structure interaction and multi-body contact: application to the aortic valves. Comput. Methods Appl. Mech. Eng. 198, 3603–3612 (2009)

    Article  MathSciNet  Google Scholar 

  7. Basting, S., Quaini, A., Čanić, S., Glowinski, R.: Extended ALE Method for fluid–structure interaction problems with large structural displacements. J. Comput. Phys. 331, 312–336 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U.: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65(1–3), 236–253 (2011)

    MATH  Google Scholar 

  9. Becker, R., Burman, E., Hansbo, A.: A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198(41–44), 3352–3360 (2009)

    Article  MathSciNet  Google Scholar 

  10. Beckert, A., Wendland, H.: Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosol Sci. Technol. 5(2), 125–134 (2001)

    Article  Google Scholar 

  11. Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)

    Article  Google Scholar 

  12. Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182(5), 775–798 (1995)

    Article  Google Scholar 

  13. Bertrand, F., Tanguy, P.A., Thibault, F.: A three-dimensional fictitious domain method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 25(6), 719–736 (1997)

    Article  MathSciNet  Google Scholar 

  14. Boffi, D., Gastaldi, L: A finite element approach for the immersed boundary method. Comput. Struct. 81(8–11), 491–501 (2003). K.J Bathe 60th Anniversary Issue

    Article  MathSciNet  Google Scholar 

  15. Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17(10), 1479–1505 (2007)

    Article  MathSciNet  Google Scholar 

  16. Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Eng. 197(25–28), 2210–2231 (2008)

    Article  MathSciNet  Google Scholar 

  17. Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)

    Article  MathSciNet  Google Scholar 

  18. Borazjani, I., Ge, L., Sotiropoulos, F.: High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann. Biomed. Eng. 38(2), 326–344 (2010)

    Article  Google Scholar 

  19. Braun, A.L., Awruch, A.M.: Finite element simulation of the wind action over bridge sectional models: Application to the Guamá river bridge (Pará State, Brazil). Finite Elem. Anal. Des. 44(3), 105–122 (2008)

    Article  Google Scholar 

  20. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348(21–22), 1217–1220 (2010)

    Article  MathSciNet  Google Scholar 

  21. Burman, E., Fernández, M.A.: Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method. C. R. Acad. Sci. Paris Sér. I Math. 345, 467–472 (2007)

    Article  MathSciNet  Google Scholar 

  22. Burman, E., Fernández, M.A.: An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes. Comput. Methods Appl. Mech. Eng. 279, 497–514 (2014)

    Article  MathSciNet  Google Scholar 

  23. Burman, E., Fernández, M.A., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44(3), 1248–1274 (2006)

    Article  MathSciNet  Google Scholar 

  24. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  Google Scholar 

  25. De Hart, J., Baaijens, F.P.T., Peters, G.W.M., Schreurs, P.J.G.: A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5), 699–712 (2003). Cardiovascular Biomechanics

    Google Scholar 

  26. De Hart, J., Peters, G.W.M., Schreurs, P.J.G., Baaijens, F.P.T.: A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36(1), 103–112 (2003)

    Article  Google Scholar 

  27. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, vol. 69. Springer, Berlin (2012)

    Google Scholar 

  28. Donea, J.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)

    Article  Google Scholar 

  29. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)

    Book  Google Scholar 

  30. Douglas, J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, pp. 207–216. Springer, Berlin (1976)

    Google Scholar 

  31. Dowell, E.H., Hall, K.C.: Modeling of fluid-structure interaction. Ann. Rev. Fluid Mech. 33(1), 445–490 (2001)

    Article  Google Scholar 

  32. Farhat, C., Lesoinne, M., Le Tallec, P.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods Appl. Mech. Eng. 157(1–2), 95–114 (1998)

    Article  MathSciNet  Google Scholar 

  33. Formaggia, L., Miglio, E., Mola, A., Parolini, N.: Fluid–structure interaction problems in free surface flows: application to boat dynamics. Int. J. Numer. Methods Fluids 56(8), 965–978 (2008)

    Article  MathSciNet  Google Scholar 

  34. Formaggia, L., Miglio, E., Mola, A., Montano, A.: A model for the dynamics of rowing boats. Int. J. Numer. Methods Fluids 61(2), 119–143 (2009)

    Article  MathSciNet  Google Scholar 

  35. Formaggia, L., Vergara, C., Zonca, S.: Unfitted extended finite elements for composite grids. Comput. Math. Appl. 76(4), 893–904 (2018)

    Article  MathSciNet  Google Scholar 

  36. Ge, L., Sotiropoulos, F.: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2), 1782–1809 (2007)

    Article  MathSciNet  Google Scholar 

  37. Gerstenberger, A.: An XFEM based fixed-grid approach to fluid-structure interaction. PhD thesis, Technical University of Munich (2010)

    Google Scholar 

  38. Gerstenberger, A., Wall, W.A.: An extended finite element method based approach for large deformation fluid-structure interaction. In: Wesseling, P., Onate, E., Periaux, J. (eds.) Proceedings of the European Conference on Computational Fluid Dynamics (2006)

    Google Scholar 

  39. Gerstenberger, A., Wall, W.A.: An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput. Methods Appl. Mech. Eng. 197(19), 1699–1714 (2008)

    Article  MathSciNet  Google Scholar 

  40. Gerstenberger, A., Wall, W.A.: An embedded Dirichlet formulation for 3D continua. Int. J. Numer. Methods Eng. 82(5), 537–563 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Glowinski, R., Pan, T.-W., Periaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111(3–4), 283–303 (1994)

    Article  MathSciNet  Google Scholar 

  42. Glowinski, R., Pan, T.-W., Periaux, J.: A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 112(1), 133–148 (1994)

    Article  MathSciNet  Google Scholar 

  43. Glowinski, R., Pan, T.-W., Periaux, J.: A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies: (I) case where the rigid body motions are known a priori. C. R. Acad. Sci. Ser. I-Math. 324(3), 361–369 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D.: A distributed lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25(5), 755–794 (1999)

    Article  MathSciNet  Google Scholar 

  45. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    Article  MathSciNet  Google Scholar 

  46. Griffith, B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28(3), 317–345 (2012)

    Article  MathSciNet  Google Scholar 

  47. Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223(1), 10–49 (2007)

    Article  MathSciNet  Google Scholar 

  48. Griffith, B.E., Luo, X., McQueen, D.M., Peskin, C.S.: Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1, 137–176 (2009)

    Article  Google Scholar 

  49. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)

    Article  MathSciNet  Google Scholar 

  50. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193(33–35), 3523–3540 (2004)

    Article  MathSciNet  Google Scholar 

  51. Hansbo, A., Hansbo, P., Larson, M.G.: A finite element method on composite grids based on Nitsche’s method. ESAIM: Math. Model. Numer. Anal. 37(3), 495–514 (2003)

    Article  MathSciNet  Google Scholar 

  52. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014)

    Article  MathSciNet  Google Scholar 

  53. Hansbo, P., Larson, M.G., Zahedi, S.: Characteristic cut finite element methods for convection–diffusion problems on time dependent surfaces. Comput. Methods Appl. Mech. Eng. 293, 431–461 (2015)

    Article  MathSciNet  Google Scholar 

  54. Harun, Z., Reda, E., Abdullah, S.: Large eddy simulation of the wind flow over skyscrapers. Recent Adv. Mech. Mech. Eng. 15, 72–79 (2015)

    Google Scholar 

  55. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary lagrangian-eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)

    Article  Google Scholar 

  56. Hsu, M.-C., Kamensky, D., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54(4), 1055–1071 (2014)

    Article  MathSciNet  Google Scholar 

  57. Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66(3), 339–363 (1988)

    Article  MathSciNet  Google Scholar 

  58. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29(3), 329–349 (1981)

    Article  MathSciNet  Google Scholar 

  59. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984)

    Article  MathSciNet  Google Scholar 

  60. Jonsson, T., Larson, M.G., Larsson, K.: Cut finite element methods for elliptic problems on multipatch parametric surfaces. Comput. Methods Appl. Mech. Eng. 324, 366–394 (2017)

    Article  MathSciNet  Google Scholar 

  61. Kamakoti, R., Shyy, W.: Fluid–structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40(8), 535–558 (2004)

    Article  Google Scholar 

  62. Kamensky, D., Hsu, M.-C., Schillinger, D., Evans, J.A., Aggarwal, A., Bazilevs, A., Sacks, M.S., Hughes, T.J.R.: An immersogeometric variational framework for fluidstructure interaction: application to bioprosthetic heart valves. Comput. Methods Appl. Mech. Eng. 284, 1005–1053 (2015)

    Article  Google Scholar 

  63. Katayama, S., Umetani, N., Sugiura, S., Hisada, T.: The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J. Thorac. Cardiovasc. Surg. 136(6), 1528–1535 (2008)

    Article  Google Scholar 

  64. Lai, Y.G., Chandran, K.B., Lemmon, J.: A numerical simulation of mechanical heart valve closure fluid dynamics. J. Biomech. 35(7), 881–892 (2002)

    Article  Google Scholar 

  65. Le, T.B., Sotiropoulos, F.: Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244, 41–62 (2013)

    Article  MathSciNet  Google Scholar 

  66. LifeV.: The parallel finite element library for the solution of PDEs (2018). http://www.lifev.org

  67. Liu, W.K., Liu, Y., Farrell, D., Zhang, L.T., Wang, X.S., Fukui, Y., Patankar, N., Zhang, Y., Bajaj, C., Lee, J., Hong, J., Chen, X., Hsu, H.: Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195(13), 1722–1749 (2006)

    Article  MathSciNet  Google Scholar 

  68. Marom, G.: Numerical methods for fluid–structure interaction models of aortic valves. Arch. Comput. Meth. Eng. 22(4), 595–620 (2015)

    Article  MathSciNet  Google Scholar 

  69. Massing, A., Larson, M.G., Logg, A.: Efficient implementation of finite element methods on nonmatching and overlapping meshes in three dimensions. SIAM J. Sci. Comput. 35(1), C23–C47 (2013)

    Article  MathSciNet  Google Scholar 

  70. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer. Math. 128(1), 73–101 (2014)

    Article  MathSciNet  Google Scholar 

  71. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A Nitsche-based cut finite element method for a fluid-structure interaction problem. Commun. Appl. Math. Comput. Sci. 10(2), 97–120 (2015)

    Article  MathSciNet  Google Scholar 

  72. Mayer, U.M., Popp, A., Gerstenberger, A., Wall, W.A.: 3D fluid-structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. Computat. Mech. 46(1), 53–67 (2010)

    Article  MathSciNet  Google Scholar 

  73. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  74. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  Google Scholar 

  75. Morgenthal, G.: Fluid Structure Interaction in Bluff-body Aerodynamics and Long-span Bridge Design: Phenomena and Methods. University of Cambridge, Department of Engineering Cambridge (2000)

    Google Scholar 

  76. Morsi, Y.S., Yang, W.W., Wong, C.S., Das, S.: Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling. J. Artif. Organs 10(2), 96–103 (2007)

    Article  Google Scholar 

  77. Nguyen, H., Reynen, J.: A space-time least-square finite element scheme for advection-diffusion equations. Comput. Methods Appl. Mech. Eng., 42(3), 331–342 (1984)

    Article  Google Scholar 

  78. Nicaise, S., Renard, Y., Chahine, E.: Optimal convergence analysis for the extended finite element method. Int. J. Numer. Methods Eng. 86(4–5), 528–548 (2011)

    Article  MathSciNet  Google Scholar 

  79. Parolini, N., Quarteroni, A.: Mathematical models and numerical simulations for the America’s cup. Comput. Methods Appl. Mech. Eng. 194(9), 1001–1026 (2005)

    Article  MathSciNet  Google Scholar 

  80. Peskin, C.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MathSciNet  Google Scholar 

  81. Pettigrew, M.J., Taylor, C.E.: Vibration analysis of shell-and-tube heat exchangers: an overview - Part 1: flow, damping, fluid elastic instability. J. Fluids Struct. 18(5), 469–483 (2003)

    Article  Google Scholar 

  82. Rega, G.: Nonlinear vibrations of suspended cables–Part I: modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Article  Google Scholar 

  83. Schott, B., Wall, W.A.: A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 276, 233–265 (2014)

    Article  MathSciNet  Google Scholar 

  84. Stijnen, J.M.A., De Hart, J., Bovendeerd, P.H.M., van de Vosse, F.N.: Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J. Fluids Struct. 19(6), 835–850 (2004)

    Article  Google Scholar 

  85. Temam, R.: Navier-Stokes Equations. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  86. Trivedi, C., Cervantes, M.J.: Fluid-structure interactions in francis turbines: a perspective review. Renew. Sust. Energ. Rev. 68, 87–101 (2017)

    Article  Google Scholar 

  87. van Loon, R.: A 3D method for modelling the fluid-structure interaction of heart valves. PhD thesis, Technische Universiteit Eindhoven (2005)

    Google Scholar 

  88. van Loon, R., Anderson, P.D., van de Vosse, F.N.: A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J. Comput. Phys. 217(2), 806–823 (2006)

    Article  MathSciNet  Google Scholar 

  89. van Loon, R., Anderson, P.D., van de Vosse, F.N., Sherwin, S.J.: Comparison of various fluid–structure interaction methods for deformable bodies. Comput. Struct. 85(11–14), 833–843 (2007). Fourth MIT Conference on Computational Fluid and Solid Mechanics

    Google Scholar 

  90. Votta, E., Le, T.B., Stevanella, M., Fusini, F., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions. J. Biomech. 46(2), 217–228 (2013). Special Issue: Biofluid Mechanics.

    Google Scholar 

  91. Wang, X., Liu, W.K.: Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng. 193(12), 1305–1321 (2004)

    Article  MathSciNet  Google Scholar 

  92. Weinberg, E.J., Mack, P.J., Schoen, F.J., García-Cardeña, G., Mofrad, M.R.K.: Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc. Eng. 10(1), 5–11 (2010)

    Article  Google Scholar 

  93. Zhang, L.T., Gay, M.: Immersed finite element method for fluid-structure interactions. J. Fluids Struct. 23(6), 839–857 (2007)

    Article  Google Scholar 

  94. Zhang, L.T., Gerstenberger, A., Wang, X., Liu, W.K.: Immersed finite element method. Comput. Methods Appl. Mech. Eng. 193(21), 2051–2067 (2004)

    Article  MathSciNet  Google Scholar 

  95. Zhang, H., Liu, L., Dong, M., Sun, H.: Analysis of wind-induced vibration of fluid–structure interaction system for isolated aqueduct bridge. Eng. Struct. 46, 28–37 (2013)

    Article  Google Scholar 

  96. Zonca, S., Vergara, C., Formaggia, L.: An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40(1), B59–B84 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Italian MIUR by the grant PRIN12, number 201289A4LX, “Mathematical and numerical models of the cardiovascular system, and their clinical applications”. C. Vergara has been partially supported by the H2020-MSCA-ITN-2017, EU project 765374 “ROMSOC—Reduced Order Modelling, Simulation and Optimization of Coupled systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zonca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vergara, C., Zonca, S. (2018). Extended Finite Elements Method for Fluid-Structure Interaction with an Immersed Thick Non-linear Structure. In: Boffi, D., Pavarino, L., Rozza, G., Scacchi, S., Vergara, C. (eds) Mathematical and Numerical Modeling of the Cardiovascular System and Applications. SEMA SIMAI Springer Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-96649-6_9

Download citation

Publish with us

Policies and ethics