Skip to main content

Electro-Mechanical Modeling and Simulation of Reentry Phenomena in the Presence of Myocardial Infarction

  • Chapter
  • First Online:
Mathematical and Numerical Modeling of the Cardiovascular System and Applications

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 16))

  • 964 Accesses

Abstract

In this work we present a parallel solver for the numerical simulation of the cardiac electro-mechanical activity. We first review the most complete mathematical model of cardiac electro-mechanics, the so-called electro-mechanical coupling (EMC) model, which consists of the following four sub-models, strongly coupled together: the Bidomain model for the electrical activity at tissue scale, constituted by a parabolic system of two reaction-diffusion partial differential equations (PDEs); the finite elasticity system for the mechanical behavior at tissue scale; the membrane model for the bioelectrical activity at cellular scale, consisting of a stiff system of ordinary differential equations (ODEs); the active tension model for the mechanical activity at cellular scale, consisting of a system of ODEs. The discretization of the EMC model is performed by finite elements in space and an operator splitting strategy in time, based on semi-implicit finite differences. As a result of the discretization techniques adopted, the most computational demanding part at each time step is the solution of the non-linear algebraic system, deriving from the discretization of the finite elasticity equations, and of the linear system deriving from the discretization of the Bidomain equations. The former is solved by a Newton-GMRES-BDDC solver, i.e. the Jacobian system at each Newton iteration is solved by GMRES accelerated by the Balancing Domain Decomposition by Constraints (BDDC) preconditioner. The latter is solved by the Conjugate Gradient method, preconditioned by the Multilevel Additive Schwarz preconditioner. The performance of the resulting parallel solver is studied on the simulation of the induction of ventricular tachycardia in an idealized left ventricle affected by an infarct scar. The simulations are run on the Marconi-KNL cluster of the Cineca laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeniran, I., Hancox, J.C., Zhang, H.: Effect of cardiac ventricular mechanical contraction on the characteristics of the ECG: a simulation study. J. Biomed. Sci. Eng. 6, 47–60 (2013)

    Article  Google Scholar 

  2. Ambrosi, D., Pezzuto, S.: Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 107, 199–212 (2012)

    Google Scholar 

  3. Arevalo, H.J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K.C., Trayanova, N.A.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7, 11437 (2016)

    Article  Google Scholar 

  4. Augustin, C.M., Neic, A., Liebmann, M., Prassl, A.J., Niederer, S.A., Haase, G., Plank, G.: Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 305, 622–646 (2016)

    Article  MathSciNet  Google Scholar 

  5. Austin, T.M., Trew, M.L., Pullan, A.J.: Solving the cardiac Bidomain equations for discontinuous conductivities. IEEE Trans. Biomed. Eng. 53(7), 1265–1272 (2006)

    Article  Google Scholar 

  6. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc Web page, http://www.mcs.anl.gov/petsc, 2015

  7. Bers, D.M.: Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd edn. Kluwer Academic Publisher (2001)

    Google Scholar 

  8. Brands, D., Klawonn, A., Rheinbach, O., Schroeder, J.: Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy. Comput. Methods Biomech. Biomed. Eng. 11(5), 569–583 (2008)

    Article  Google Scholar 

  9. Cabo, C., Boyden, P.: Electrical remodeling of the epicardial border zone in the canine infarcted heart: a computational analysis. Am. J. Physiol. Heart Circ. Physiol. 284, H372–H384 (2003)

    Article  Google Scholar 

  10. Chabiniok, R., Wang, V.Y., Hadjicharalambous, M., Asner, L., Lee, J., Sermesant, M., Kuhl, E., Young, A.A., Moireau, P., Nash, M.P., Chapelle, D., Nordsletten, D.A.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6, 20150083 (2016)

    Article  Google Scholar 

  11. Cherubini, C., Filippi, S., Gizzi, A., Ruiz-Baier, R.: A note on stress-driven anisotropic diffusion and its role in active deformable media. J. Theor. Biol. 430, 221–228 (2017)

    Article  Google Scholar 

  12. Cherubini, C., Filippi, S., Nardinocchi, P., Teresi, L.: An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. Prog. Biophys. Mol. Biol. 97, 562–573 (2008)

    Article  Google Scholar 

  13. Colli Franzone, P., Guerri, L., Pennacchio, M., Taccardi, B.: Spread of excitation in 3-D models of he anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Math. Biosci. 147, 131–171 (1998)

    MATH  Google Scholar 

  14. Colli Franzone, P., Pavarino, L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods. Appl. Sci. 14(6), 883–911 (2004)

    Article  MathSciNet  Google Scholar 

  15. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: A comparison of coupled and uncoupled solvers for the cardiac Bidomain model. ESAIM: Math. Mod. Numer. Anal. 47(4), 1017–1035 (2013)

    Article  MathSciNet  Google Scholar 

  16. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Mathematical Cardiac Electrophysiology, MSA Vol. 13. Springer, New York (2014)

    Google Scholar 

  17. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model. Math. Mod. Meth. Appl. Sci. 26(1), 27–57 (2016)

    Article  MathSciNet  Google Scholar 

  18. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study. Math. Biosci. 280, 71–86 (2016)

    Article  MathSciNet  Google Scholar 

  19. Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study. Chaos 27, 093905 (2017)

    Article  MathSciNet  Google Scholar 

  20. Coppola1, B.A., Omens, J.H.: Role of tissue structure on ventricular wall mechanics. Mol. Cell. Biomech. 5(3), 183–196 (2008)

    Google Scholar 

  21. Costa, K.D., Holmes, J.W., McCulloch, A.D.: Modelling cardiac mechanical properties in three dimensions. Philos. Trans. R. Soc. Lond. A 359, 1233–1250 (2001)

    Article  Google Scholar 

  22. Dohrmann, C.R.: A Preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25, 246–258 (2003)

    Article  MathSciNet  Google Scholar 

  23. Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (2000)

    Article  Google Scholar 

  24. Eriksson, T.S.E., Prassl, A.J., Plank, G., Holzapfel, G.A.: Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18, 592–606 (2013)

    Article  MathSciNet  Google Scholar 

  25. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method – part I. A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Eng. 50, 1523–1544 (2001)

    MATH  Google Scholar 

  26. Gerardo Giorda, L., Mirabella, L., Nobile, F., Perego, M., Veneziani, A.: A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comput. Phys. 228(10), 3625–3639 (2009)

    Article  MathSciNet  Google Scholar 

  27. Geselowitz, D.B., Miller, W.T.: A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11, 191–206 (1983)

    Article  Google Scholar 

  28. G\(\ddot {\mbox{o}}\)ktepe, S., Kuhl, E.: Electromechanics of the heart - A unified approach to the strongly coupled excitation-contraction problem. Comput. Mech. 80, 227–243 (2010)

    Google Scholar 

  29. Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1), 42–55 (1991)

    Article  Google Scholar 

  30. Guccione, J.M., Costa, K.D., McCulloch, A.D.: Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28, 1167–1177 (1995)

    Article  Google Scholar 

  31. Gurev, V., Constantino, J., Rice, J.J., Trayanova, N.A.: Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. Biophys. J. 99, 745–754 (2010)

    Article  Google Scholar 

  32. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  33. Holmes, J.W., Borg, T.K., Covell, J.W.: Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7, 223–253 (2005)

    Article  Google Scholar 

  34. Holmes, J.W., Laksman, Z., Gepstein, L.: Making better scar: Emerging approaches for modifying mechanical and electrical properties following infarction and ablation. Prog. Biophys. Mol. Biol. 120(1–3), 134–148 (2016)

    Article  Google Scholar 

  35. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium. A structurally-based framework for material characterization. Philos. Trans. R. Soc. Lond. A 367, 3445–3475 (2009)

    Article  Google Scholar 

  36. Humphrey, J.D.: Cardiovascular Solid Mechanics, Cells, Tissues and Organs. Springer, New York (2001)

    Google Scholar 

  37. Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–331 (1998)

    Article  Google Scholar 

  38. Hunter, P.J., Nash, M.P., Sands, G.B.: Computational electromechanics of the heart. In: Panfilov, A.V., Holden, A.V. (eds.) Computational Biology of the Heart. Wiley (1997)

    Google Scholar 

  39. Jie, X., Gurev, V., Trayanova, N.A.: Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ. Res. 106, 185–192 (2010)

    Article  Google Scholar 

  40. Keldermann, R.H., Nash, M.P., Gelderblom, H., Wang, V.Y., Panfilov, A.V.: Electromechanical wavebreak in a model of the human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 299, H134–H143 (2010)

    Article  Google Scholar 

  41. Kerckhoffs, R.C.P., Bovendeerd, P.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T.: Homogeneity of cardiac contraction despite physiological asyncrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536–547 (2003)

    Article  Google Scholar 

  42. Kerckhoffs, R.C.P., Neal, M.L., Gu, Q., Bassingthwaighte, J.B., Omens, J.H., McCulloch, A.D.: Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35(1), 1–18 (2007)

    Article  Google Scholar 

  43. Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM - Z. Angew. Math. Mech. 90(1), 5–32 (2010)

    Article  MathSciNet  Google Scholar 

  44. Klawonn, A., Widlund, O.B.: Dual-primal FETI methods for linear elasticity. Comm. Pure Appl. Math. 59, 1523–1572 (2006)

    Article  MathSciNet  Google Scholar 

  45. Kohl, P., Sachs, F., Franz, M.R.: Cardiac Mechano-Electric Feedback and Arrhythmias: From Pipette to Patient. Elsevier Sauders (2011)

    Google Scholar 

  46. Krishnamurthy, A., Villongco, C.T., Chuang, J., Frank, L.R., Nigam, V., Belezzuoli, E., Stark, P., Krummen, D.E., Narayan, S., Omens, J.H., McCulloch, A.D., Kerckhoffs, R.C.P.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013)

    Article  Google Scholar 

  47. Land, S., Niederer, S.A., Aronsen, J.M., Espe, E.K.S., Zhang, L.L., Louch, W.E., Sjaastad, I., Sejersted, O.M., Smith, N.P.: An analysis of deformation-dependent electromechanical coupling in the mouse heart. J. Physiol. 590, 4553–4569 (2012)

    Article  Google Scholar 

  48. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. Heart Circ. Physiol. 269, H571–H582 (1995)

    Article  Google Scholar 

  49. Li, X.T., Dyachenko, V., Zuzarte, M., Putzke, C., Preisig-Muller, R., Isenberg, G., Daut, J.: The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc. Res. 69, 86–97 (2006)

    Article  Google Scholar 

  50. Li, J., Widlund, O.B.: FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Meth. Eng. 66(2), 250–271 (2006)

    Article  MathSciNet  Google Scholar 

  51. Mandel, J., Dohrmann, C.R.: Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Lin. Alg. Appl. 10(7), 639–659 (2003)

    Article  MathSciNet  Google Scholar 

  52. Mandel, J., Dohrmann, C.R., Tezaur, R.: An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math. 54(2), 167–193 (2005)

    Article  MathSciNet  Google Scholar 

  53. Mardal, K.-A., Nielsen, B.F., Cai, X., Tveito, A.: An order optimal solver for the discretized bidomain equations. Numer. Linear Algebr. Appl. 14(2), 83–98 (2007)

    Article  MathSciNet  Google Scholar 

  54. Munteanu, M., Pavarino, L.F.: Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. Math. Mod. Meth. Appl. Sci. 19(7), 1065–1097 (2009)

    Article  MathSciNet  Google Scholar 

  55. Munteanu, M., Pavarino, L.F., Scacchi, S.: A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(5), 3861–3883 (2009)

    Article  MathSciNet  Google Scholar 

  56. Murillo, M., Cai, X.: A fully implicit parallel algorithm for simulating the nonlinear electrical activity of the heart. Numer. Linear Algebr. Appl. 11, 261–277 (2004)

    Article  Google Scholar 

  57. Nardinocchi, P., Teresi, L.: Electromechanical modeling of anisotropic cardiac tissues. Math. Mech. Sol. 18(6), 576–591 (2013)

    Article  MathSciNet  Google Scholar 

  58. Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. From tissue structure to ventricular function. J. Elast. 61, 113–141 (2000)

    MATH  Google Scholar 

  59. Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004)

    Article  Google Scholar 

  60. Nayak, A.R., Panfilov, A.V., Pandit, R.: Spiral-wave dynamics in a mathematical model of human ventricular tissue with myocytes and Purkinje fibers. Phys. Rev. E 95(2), 022405 (2017)

    Article  MathSciNet  Google Scholar 

  61. Niederer, S.A., Hunter, P.J., Smith, N.P.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90, 1697–1722 (2006)

    Article  Google Scholar 

  62. Niederer, S.A., Smith, N.P.: A mathematical model of the slow force response to stretch in rat ventricular myocites, Biophys. J. 92, 4030–4044 (2007)

    Article  Google Scholar 

  63. Nobile, F., Quarteroni, A., Ruiz-Baier, R.: An active strain electromechanical model of cardiac tissue. Int. J. Num. Methods Biomed. Eng. 28, 52–71 (2012)

    Article  MathSciNet  Google Scholar 

  64. Noble, D., Rudy, Y.: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Philos. Trans. R. Soc. Lond. A 359, 1127–1142 (2001)

    Article  Google Scholar 

  65. Palamara, S., Vergara, C., Faggiano, E., Nobile, F.: An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiology. J. Comput. Phys. 283, 495–517 (2015)

    Article  MathSciNet  Google Scholar 

  66. Pathmanathan, P.J., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Quart. J. Mech. Appl. Math. 63(3), 375–399 (2010)

    Article  MathSciNet  Google Scholar 

  67. Pathmanathan, P.J., Whiteley, J.P.: A numerical method for cardiac mechanoelectric simulations. Ann. Biomed. Eng. 37, 860–873 (2009)

    Article  Google Scholar 

  68. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(1), 420–443 (2008)

    Article  MathSciNet  Google Scholar 

  69. Pavarino, L.F., Scacchi, S.: Parallel multilevel Schwarz and block preconditioners for the Bidomain parabolic-parabolic and parabolic-elliptic formulations. SIAM J. Sci. Comp. 33(4), 1897–1919 (2011)

    Article  MathSciNet  Google Scholar 

  70. Pavarino, L.F., Scacchi, S., Zampini, S.: Newton–Krylov–BDDC solvers for non-linear cardiac mechanics. Comput. Meth. Appl. Mech. Eng. 295, 562–580 (2015)

    Article  Google Scholar 

  71. Pavarino, L.F., Widlund, O.B., Zampini, S.: BDDC Preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comp. 32(6), 3604–3626 (2010)

    Article  MathSciNet  Google Scholar 

  72. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37, 1333–1370 (2006)

    Article  MathSciNet  Google Scholar 

  73. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the bidomain reaction–diffusion system. Appl. Numer. Math. 59, 3033–3050 (2009)

    Article  MathSciNet  Google Scholar 

  74. Pennacchio, M., Simoncini, V.: Fast structured AMG preconditioning for the bidomain model in electrocadiology. SIAM J. Sci. Comput. 33, 721–745 (2011)

    Article  MathSciNet  Google Scholar 

  75. Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. Eur. J. Mech. A Solids 48(1), 83–96 (2014)

    Article  MathSciNet  Google Scholar 

  76. Plank, G., Liebmann, M., Weber dos Santos, R., Vigmond, E.J., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    Article  Google Scholar 

  77. Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically Modelling the Electrical Activity of the Heart. World Scientific, Singapore (2005)

    Book  Google Scholar 

  78. Quarteroni, A., Lassila, T., Rossi, S., Ruiz-Baier, R.: Integrated Heart–Coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314, 345–407 (2017)

    Article  MathSciNet  Google Scholar 

  79. Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numerica 26, 365–590 (2017)

    Article  MathSciNet  Google Scholar 

  80. Richardson, W.J., Clarke, S.A., Quinn, T.A., Holmes, J.W.: Physiological implications of myocardial scar structure. Compr. Physiol. 5(4), 1877–1909 (2015)

    Article  Google Scholar 

  81. Rice, J.J., Wang, F., Bers, D.M., de Tombe, P.P.: Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys. J. 95, 2368–2390 (2008)

    Article  Google Scholar 

  82. Rossi, S., Ruiz-Baier, R., Pavarino, L.F., Quarteroni, A.: Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Num. Methods Biomed. Eng. 28, 761–788 (2012)

    Article  MathSciNet  Google Scholar 

  83. Rossi, S., Lassila, T., Ruiz-Baier, R., Sequeira, A., Quarteroni, A.: Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur. J. Mech. A Solids 48, 129–142 (2014)

    Article  MathSciNet  Google Scholar 

  84. Rudy, Y., Silva, J.R.: Computational biology in the study of cardiac ion channels and cell electrophysiology. Quart. Rev. Biophys. 39(1), 57–116 (2006)

    Article  Google Scholar 

  85. Sahli Costabal, F., Concha, F.A., Hurtado, D.E., Kuhl, E.: The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput. Methods Appl. Mech. Eng. 320, 352–368 (2017)

    Article  MathSciNet  Google Scholar 

  86. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of cardiac electromechanical activity. Comput. Struct. 84, 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  87. Scacchi, S.: A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. Comput. Methods Appl. Mech. Eng. 200(5–8), 717–725 (2011)

    Article  MathSciNet  Google Scholar 

  88. Smith, N.P., Nickerson, D.P., Crampin, E.J., Hunter, P.J.: Multiscale computational modelling of the heart. Acta Numerica, 371–431 (2004)

    Google Scholar 

  89. Sundnes, J., Lines, G.T., Mardal, K., Tveito, A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Eng. 5, 397–409 (2002)

    Article  Google Scholar 

  90. Tagliabue, A., Dedè, L., Quarteroni, A.: Fluid dynamics of an idealized left ventricle: the extended Nitsche’s method for the treatment of heart valves as mixed time varying boundary conditions. Int. J. Numer. Methods Fluids 85(3), 135–164 (2017)

    Article  MathSciNet  Google Scholar 

  91. Tagliabue, A., Dedè, L., Quarteroni, A.: Complex blood flow patterns in an idealized left ventricle: A numerical study. Chaos 27(9), 093939 (2017)

    Article  MathSciNet  Google Scholar 

  92. K. H. W. J. ten Tusscher, D. Noble, P. J. Noble and A. Pan, V.: A model for human ventricular tissue. Am. J. Phys. Heart Circ. Physiol. 286, H1573–H1589 (2004)

    Article  Google Scholar 

  93. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Phys. Heart Circ. Physiol. 291, H1088–H1100 (2006)

    Article  Google Scholar 

  94. Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, Vol. 34. Springer, Berlin (2004)

    Google Scholar 

  95. Tung, L.: A bidomain model for describing ischemic myocardiacl D.C. potentials. PhD dissertation, MIT, Cambridge, MA (1978)

    Google Scholar 

  96. Usyk, T.P., LeGrice, I.J., McCulloch, A.D.: Computational model of three-dimensional cardiac electromechanics. Comput. Visual. Sci. 4, 249–257 (2002)

    Article  Google Scholar 

  97. Usyk, T.P., Mazharia, R., McCulloch, A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61(1–3), 143–164 (2000)

    Article  Google Scholar 

  98. Veneroni, M.: Reaction-diffusion systems for the macroscopic Bidomain model of the cardiac electric field. Nonlin. Anal. Real World Appl. 10, 849–868 (2009)

    Article  MathSciNet  Google Scholar 

  99. Vergara, C., Lange, M., Palamara, S., Lassila, T., Frangi, A., Quarteroni, A.: A coupled 3D–1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network. J. Comput. Phys. 308, 218–238 (2016)

    Article  MathSciNet  Google Scholar 

  100. Vetter, F.J., McCulloch, A.D.: Three-dimensional stress and strain in passive rabbit left ventricle: a model study. Ann. Biomed. Eng. 28, 781–792 (2000)

    Article  Google Scholar 

  101. Vigmond, E.J., Aguel, F., Trayanova, N.A.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49(11), 1260–1269 (2002)

    Article  Google Scholar 

  102. Wall, S.T., Guccione, J.M., Ratcliffe, M.B., Sundnes, J.S.: Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injures left ventricle: a finite element model study. Am. J. Physiol. Heart Circ. Physiol. 302, H206–H214 (2012)

    Article  Google Scholar 

  103. Whiteley, J.P., Bishop, M.J., Gavaghan, D.J.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Math. Biol. 69, 2199–2225 (2007)

    Article  MathSciNet  Google Scholar 

  104. Zampini, S.: Balancing Neumann-Neumann methods for the cardiac Bidomain model. Numer. Math. 123(2), 363–393 (2013)

    Article  MathSciNet  Google Scholar 

  105. Zampini, S.: Dual-primal methods for the cardiac bidomain model. Math. Models Methods Appl. Sci. 24(4), 667–696 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Scacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franzone, P.C., Pavarino, L.F., Scacchi, S. (2018). Electro-Mechanical Modeling and Simulation of Reentry Phenomena in the Presence of Myocardial Infarction. In: Boffi, D., Pavarino, L., Rozza, G., Scacchi, S., Vergara, C. (eds) Mathematical and Numerical Modeling of the Cardiovascular System and Applications. SEMA SIMAI Springer Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-96649-6_3

Download citation

Publish with us

Policies and ethics