Skip to main content

Experimental Methods for the Characterization of Materials for Thermal Energy Storage with Chemical Reactions

  • Chapter
  • First Online:
Recent Advancements in Materials and Systems for Thermal Energy Storage

Part of the book series: Green Energy and Technology ((GREEN))

  • 946 Accesses

Abstract

The present chapter deals with the experimental characterisation methodologies for TES thermochemical materials with chemical reactions. In particular, thermogravimetric techniques, small-scale reactors configurations and methodologies for the evaluation of thermal energy and power density are discussed. Furthermore, morphological, structural and mechanical characterisations are introduced and applied to typical thermochemical TES materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. André L, Abanades S, Flamant G (2016) Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage. Renew Sustain Energ Rev 64:703–715. https://doi.org/10.1016/j.rser.2016.06.043

    Article  Google Scholar 

  2. Takasu H, Ryu J, Kato Y (2017) Application of lithium orthosilicate for high-temperature thermochemical energy storage. Appl Energ 193:74–83. https://doi.org/10.1016/j.apenergy.2017.02.029

    Article  Google Scholar 

  3. Halstead PE, Moore AE (1957) 769. The thermal dissociation of calcium hydroxide. J Chem Soc 3873–3875. https://doi.org/10.1039/jr9570003873

  4. Denbigh KG (1981) The principles of chemical equilibrium, 4th edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Nagel T, Shao H, Roßkopf C et al (2014) The influence of gas-solid reaction kinetics in models of thermochemical heat storage under monotonic and cyclic loading. Appl Energ 136:289–302. https://doi.org/10.1016/j.apenergy.2014.08.104

    Article  Google Scholar 

  6. Wang W, Kolditz O, Nagel T (2017) Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices. Appl Energy 185:1954–1964. https://doi.org/10.1016/j.apenergy.2016.03.053

    Article  Google Scholar 

  7. Ranjha Q, Oztekin A (2017) Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage. Renew Energy 111:825–835. https://doi.org/10.1016/j.renene.2017.04.062

    Article  Google Scholar 

  8. Kim ST, Ryu J, Kato Y (2011) Reactivity enhancement of chemical materials used in packed bed reactor of chemical heat pump. Prog Nucl Energy 53:1027–1033. https://doi.org/10.1016/j.pnucene.2011.05.013

    Article  Google Scholar 

  9. Myagmarjav O, Zamengo M, Ryu J, Kato Y (2015) Energy density enhancement of chemical heat storage material for magnesium oxide/water chemical heat pump. Appl Therm Eng 91:377–386. https://doi.org/10.1016/j.applthermaleng.2015.08.008

    Article  Google Scholar 

  10. Kariya J, Ryu J, Kato Y (2015) Reaction performance of calcium hydroxide and expanded graphite composites for chemical heat storage applications. ISIJ Int 55:457–463. https://doi.org/10.2355/isijinternational.55.457

    Article  Google Scholar 

  11. Mastronardo E, Bonaccorsi L, Kato Y et al (2016) Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Appl Energy 181:232–243. https://doi.org/10.1016/j.apenergy.2016.08.041

    Article  Google Scholar 

  12. Shkatulov A, Aristov Y (2015) Modification of magnesium and calcium hydroxides with salts: an efficient way to advanced materials for storage of middle-temperature heat. Energy 85:667–676. https://doi.org/10.1016/J.ENERGY.2015.04.004

    Article  Google Scholar 

  13. Zamengo M, Ryu J, Kato Y (2014) Thermochemical performance of magnesium hydroxide-expanded graphite pellets for chemical heat pump. Appl Therm Eng 64:339–347. https://doi.org/10.1016/j.applthermaleng.2013.12.036

    Article  Google Scholar 

  14. Schaube F, Koch L, Wörner A, Müller-Steinhagen H (2012) A thermodynamic and kinetic study of the de-and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage. Thermochim Acta 538:9–20. https://doi.org/10.1016/j.tca.2012.03.003

    Article  Google Scholar 

  15. Schaube F, Kohzer A, Schütz J et al (2013) De-and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: experimental results. Chem Eng Res Des 91:856–864. https://doi.org/10.1016/j.cherd.2013.02.019

    Article  Google Scholar 

  16. Pardo P, Anxionnaz-Minvielle Z, Rougé S et al (2014) Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage. Sol Energy 107:605–616. https://doi.org/10.1016/j.solener.2014.06.010

    Article  Google Scholar 

  17. Roßkopf C, Haas M, Faik A et al (2014) Improving powder bed properties for thermochemical storage by adding nanoparticles. Energy Convers Manag 86:93–98. https://doi.org/10.1016/j.enconman.2014.05.017

    Article  Google Scholar 

  18. Schmidt M, Szczukowski C, Roßkopf C et al (2014) Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide. Appl Therm Eng 62:553–559. https://doi.org/10.1016/j.applthermaleng.2013.09.020

    Article  Google Scholar 

  19. Yan J, Zhao CY (2016) Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage. Appl Energy 175:277–284. https://doi.org/10.1016/j.apenergy.2016.05.038

    Article  Google Scholar 

  20. Kuwata K, Esaki T, Iwase D et al (2017) Long-term durability and reactivation of thermochemical heat storage driven by the CaO/Ca(OH)2 reversible reaction. J Mater Sci Chem Eng 5:23–32. https://doi.org/10.4236/msce.2017.511003

    Article  Google Scholar 

  21. Schmidt M, Linder M (2017) Power generation based on the Ca(OH)2/ CaO thermochemical storage system—experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design. Appl Energy 203:594–607. https://doi.org/10.1016/j.apenergy.2017.06.063

    Article  Google Scholar 

  22. Ferchaud C (2016) Experimental study of salt hydrates for thermochemical seasonal heat storage. Technische Universiteit Eindhoven, Eindhoven

    Google Scholar 

  23. Roelands M, Cuypers R, Kruit KD et al (2015) Preparation & characterization of sodium sulfide hydrates for application in thermochemical storage systems. Energy Procedia 70:257–266. https://doi.org/10.1016/J.EGYPRO.2015.02.122

    Article  Google Scholar 

  24. Donkers PAJ, Pel L, Adan OCG (2016) Experimental studies for the cyclability of salt hydrates for thermochemical heat storage. J Energy Storage 5:25–32. https://doi.org/10.1016/j.est.2015.11.005

    Article  Google Scholar 

  25. Block T, Knoblauch N, Schmücker M (2014) The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material. Thermochim Acta 577:25–32. https://doi.org/10.1016/J.TCA.2013.11.025

    Article  Google Scholar 

  26. Block T, Schmücker M (2016) Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems. Sol Energy 126:195–207. https://doi.org/10.1016/J.SOLENER.2015.12.032

    Article  Google Scholar 

  27. Zondag H, Kikkert B, Smeding S et al (2013) Prototype thermochemical heat storage with open reactor system. Appl Energy 109:360–365. https://doi.org/10.1016/j.apenergy.2013.01.082

    Article  Google Scholar 

  28. De Jong A-J, Trausel F, Finck C et al (2014) Thermochemical heat storage—system design issues. Energy Procedia 48:309–319. https://doi.org/10.1016/j.egypro.2014.02.036

    Article  Google Scholar 

  29. Shkatulov A, Ryu J, Kato Y, Aristov Y (2012) Composite material “Mg(OH)2/vermiculite”: a promising new candidate for storage of middle temperature heat. Energy 44:1028–1034. https://doi.org/10.1016/J.ENERGY.2012.04.045

    Article  Google Scholar 

  30. Solé A, Fontanet X, Barreneche C et al (2013) Requirements to consider when choosing a thermochemical material for solar energy storage. Sol Energy 97:398–404. https://doi.org/10.1016/j.solener.2013.08.038

    Article  Google Scholar 

  31. Ferchaud C, Zondag H, Veldhuis J, de Boer R (2012) Study of the reversible water vapour sorption process of MgSO4.7H2O and MgCl2.6H2 O under the conditions of seasonal solar heat storage. J Phys Conf Ser 395:12069. https://doi.org/10.1088/1742-6596/395/1/012069

    Article  Google Scholar 

  32. Lin S, Harada M, Suzuki Y, Hatano H (2006) CaO hydration rate at high temperature (∼1023 K). https://doi.org/10.1021/ef050257o

  33. Carrillo AJ, Serrano DP, Pizarro P, Coronado JM (2014) Thermochemical heat storage based on the Mn2O3/Mn3O4 redox couple: influence of the initial particle size on the morphological evolution and cyclability. J Mater Chem A 2:19435–19443. https://doi.org/10.1039/C4TA03409K

    Article  Google Scholar 

  34. van Essen VM, Zondag HA, Gores JC et al (2009) Characterization of MgSO[sub 4] hydrate for thermochemical seasonal heat storage. J Sol Energy Eng 131:41014. https://doi.org/10.1115/1.4000275

    Article  Google Scholar 

  35. Brotton SJ, Kaiser RI (2013) In Situ Raman spectroscopic study of gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator. J Phys Chem Lett 4:669–673. https://doi.org/10.1021/jz301861a

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukitaka Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, Y., Funayama, S., Piperopoulos, E., Milone, C. (2019). Experimental Methods for the Characterization of Materials for Thermal Energy Storage with Chemical Reactions. In: Frazzica, A., Cabeza, L. (eds) Recent Advancements in Materials and Systems for Thermal Energy Storage. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96640-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96640-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96639-7

  • Online ISBN: 978-3-319-96640-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics