Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In the present chapter, an introduction about the concept of sorption TES technology is reported. The closed and open configurations are discussed and an overview on the ongoing research and development activities for materials, components and systems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McBain JW (1909) XCIX. The mechanism of the adsorption (“sorption”) of hydrogen by carbon. Philos Mag Ser 6 18:916–935. https://doi.org/10.1080/14786441208636769

    Article  Google Scholar 

  2. Cabeza LF, Solé A, Barreneche C (2017) Review on sorption materials and technologies for heat pumps and thermal energy storage. Renew Energy 110:3–39. https://doi.org/10.1016/j.renene.2016.09.059

    Article  Google Scholar 

  3. Ding Y, Riffat SB (2013) Thermochemical energy storage technologies for building applications: a state-of-the-art review. Int J Low-Carbon Technol 8:106–116

    Article  Google Scholar 

  4. Lefebvre D, Tezel FH (2017) A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renew Sustain Energy Rev 67:116–125

    Article  Google Scholar 

  5. Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust Sci 39:489–514. https://doi.org/10.1016/j.pecs.2013.05.004

    Article  Google Scholar 

  6. Scapino L, Zondag HA, Van Bael J et al (2017) Sorption heat storage for long-term low-temperature applications: a review on the advancements at material and prototype scale. Appl Energy 190:920–948. https://doi.org/10.1016/j.apenergy.2016.12.148

    Article  Google Scholar 

  7. Chen JF, Dai YJ, Wang RZ (2017) Experimental and analytical study on an air-cooled single effect LiBr-H2O absorption chiller driven by evacuated glass tube solar collector for cooling application in residential buildings. Sol Energy 151:110–118. https://doi.org/10.1016/j.solener.2017.05.029

    Article  Google Scholar 

  8. N ‘Tsoukpoe KE, Perier-Muzet M, Le Pierrès N et al (2014) Thermodynamic study of a LiBr–H2O absorption process for solar heat storage with crystallisation of the solution. Sol Energy 104:2–15. https://doi.org/10.1016/j.solener.2013.07.024

    Article  Google Scholar 

  9. Weber R, Dorer V (2008) Long-term heat storage with NaOH. Vacuum 82:708–716. https://doi.org/10.1016/J.VACUUM.2007.10.018

    Article  Google Scholar 

  10. Liu H, N ‘Tsoukpoe KE, Le Pierrès N, Luo L (2011) Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energy Convers Manag 52:2427–2436. https://doi.org/10.1016/J.ENCONMAN.2010.12.049

    Article  Google Scholar 

  11. Ibrahim NI, Al-Sulaiman FA, Ani FN (2018) Solar absorption systems with integrated absorption energy storage—a review. Renew Sustain Energy Rev 82:1602–1610. https://doi.org/10.1016/J.RSER.2017.07.005

    Article  Google Scholar 

  12. Siddiqui MU, Said SAM (2015) A review of solar powered absorption systems. Renew Sustain Energy Rev 42:93–115. https://doi.org/10.1016/J.RSER.2014.10.014

    Article  Google Scholar 

  13. Lehmann C, Beckert S, Nonnen T et al (2017) Water loading lift and heat storage density prediction of adsorption heat storage systems using Dubinin-Polanyi theory—comparison with experimental results. Appl Energy 207:274–282. https://doi.org/10.1016/J.APENERGY.2017.07.008

    Article  Google Scholar 

  14. Henninger SK, Schmidt FP, Henning H-M (2010) Water adsorption characteristics of novel materials for heat transformation applications. Appl Therm Eng 30:1692–1702. https://doi.org/10.1016/J.APPLTHERMALENG.2010.03.028

    Article  Google Scholar 

  15. Deshmukh H, Maiya MP, Srinivasa Murthy S (2017) Study of sorption based energy storage system with silica gel for heating application. Appl Therm Eng 111:1640–1646. https://doi.org/10.1016/J.APPLTHERMALENG.2016.07.069

    Article  Google Scholar 

  16. Gordeeva LG, Solovyeva MV, Aristov YI (2016) NH2-MIL-125 as a promising material for adsorptive heat transformation and storage. Energy 100:18–24. https://doi.org/10.1016/J.ENERGY.2016.01.034

    Article  Google Scholar 

  17. Database of zeolite structures. http://www.iza-structure.org/databases/. Accessed 28 Nov 2017

  18. Alby D, Salles F, Fullenwarth J, Zajac J (2017) On the use of metal cation-exchanged zeolites in sorption thermochemical storage: some practical aspects in reference to the mechanism of water vapor adsorption. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2017.11.020

    Article  Google Scholar 

  19. Aprea P, de Gennaro B, Gargiulo N et al (2016) Sr-, Zn- and Cd-exchanged zeolitic materials as water vapor adsorbents for thermal energy storage applications. Appl Therm Eng 106:1217–1224. https://doi.org/10.1016/J.APPLTHERMALENG.2016.06.066

    Article  Google Scholar 

  20. Ng E-P, Mintova S (2008) Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater 114:1–26. https://doi.org/10.1016/j.micromeso.2007.12.022

    Article  Google Scholar 

  21. Brancato V, Frazzica A (2018) Characterisation and comparative analysis of zeotype water adsorbents for heat transformation applications. Sol Energy Mater Sol Cells 180:91–102. https://doi.org/10.1016/J.SOLMAT.2018.02.035

    Article  Google Scholar 

  22. Sing KSW, Everett DH, Haul RAW et al (1985) Reporting physisorption data for gas/solid systems—with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  23. Aristov YI (2014) Concept of adsorbent optimal for adsorptive cooling/heating. Appl Therm Eng 72:166–175. https://doi.org/10.1016/J.APPLTHERMALENG.2014.04.077

    Article  Google Scholar 

  24. Palomba V, Vasta S, Freni A (2017) Experimental testing of AQSOA FAM Z02/water adsorption system for heat and cold storage. Appl Therm Eng 124:967–974. https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.085

    Article  Google Scholar 

  25. Bales C, Gantenbein P, Jaenig D et al (2008) Laboratory tests of chemical reactions and prototype sorption storage units. A report of IEA solar heating and cooling programme—task 32: advanced storage concepts for solar and low energy buildings

    Google Scholar 

  26. Chi CW, Wasan DT (1969) Measuring the equilibrium pressure of supported and unsupported adsorbents. Ind Eng Chem Fundam 8:816–818. https://doi.org/10.1021/i160032a036

    Article  Google Scholar 

  27. Heiti RV, Thodos G (1986) Energy release in the dehumidification of air using a bed of CaCl2-impregnated Celite. Ind Eng Chem Fundam 25:768–771. https://doi.org/10.1021/i100024a048

    Article  Google Scholar 

  28. Casey SP, Elvins J, Riffat S, Robinson A (2014) Salt impregnated desiccant matrices for “open” thermochemical energy storage—selection, synthesis and characterisation of candidate materials. Energy Build 84:412–425. https://doi.org/10.1016/J.ENBUILD.2014.08.028

    Article  Google Scholar 

  29. Druske M-M, Fopah-Lele A, Korhammer K et al (2014) Developed materials for thermal energy storage: synthesis and characterization. Energy Proc 61:96–99. https://doi.org/10.1016/J.EGYPRO.2014.11.915

    Article  Google Scholar 

  30. Liu H, Nagano K, Togawa J (2015) A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system. Sol Energy 111:186–200. https://doi.org/10.1016/J.SOLENER.2014.10.044

    Article  Google Scholar 

  31. Opel O, Rammelberg HU, Gerard M, Ruck WKL (2011) Thermochemical storage materials research—TGA/DSC-hydration studies. In: 1st International conference for sustainable energy storage

    Google Scholar 

  32. Yu N, Wang RZ, Lu ZS, Wang LW (2015) Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage. Int J Heat Mass Transf 84:660–670. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.01.065

    Article  Google Scholar 

  33. Ponomarenko IV, Glaznev IS, Gubar AV et al (2010) Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores”. Microporous Mesoporous Mater 129:243–250. https://doi.org/10.1016/J.MICROMESO.2009.09.023

    Article  Google Scholar 

  34. Hongois S, Kuznik F, Stevens P, Roux J-J (2011) Development and characterisation of a new MgSO4—zeolite composite for long-term thermal energy storage. Sol Energy Mater Sol Cells 95:1831–1837. https://doi.org/10.1016/j.solmat.2011.01.050

    Article  Google Scholar 

  35. Jänchen J, Ackermann D, Stach H, Brösicke W (2004) Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol Energy 76:339–344. https://doi.org/10.1016/J.SOLENER.2003.07.036

    Article  Google Scholar 

  36. Jänchen J, Ackermann D, Weiler E et al (2005) Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat. Thermochim Acta 434:37–41. https://doi.org/10.1016/J.TCA.2005.01.009

    Article  Google Scholar 

  37. Posern K, Kaps C (2010) Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2. Thermochim Acta 502:73–76. https://doi.org/10.1016/J.TCA.2010.02.009

    Article  Google Scholar 

  38. Ristić A, Maučec D, Henninger SK, Kaučič V (2012) New two-component water sorbent CaCl2-FeKIL2 for solar thermal energy storage. Microporous Mesoporous Mater 164:266–272. https://doi.org/10.1016/J.MICROMESO.2012.06.054

    Article  Google Scholar 

  39. Korhammer K, Druske M-M, Fopah-Lele A et al (2016) Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage. Appl Energy 162:1462–1472. https://doi.org/10.1016/j.apenergy.2015.08.037

    Article  Google Scholar 

  40. Grekova A, Gordeeva L, Aristov Y (2016) Composite sorbents “Li/Ca halogenides inside multi-wall carbon nano-tubes” for thermal energy storage. Sol Energy Mater Sol Cells 155:176–183. https://doi.org/10.1016/j.solmat.2016.06.006

    Article  Google Scholar 

  41. Grekova AD, Gordeeva LG, Aristov YI (2017) Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage. Appl Therm Eng 124:1401–1408. https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.122

    Article  Google Scholar 

  42. Fumey B, Weber R, Gantenbein P et al (2015) Operation results of a closed sorption heat storage prototype. Energy Proc 73:324–330. https://doi.org/10.1016/j.egypro.2015.07.698

    Article  Google Scholar 

  43. Johannes K, Kuznik F, Hubert J-L et al (2015) Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl Energy 159:80–86. https://doi.org/10.1016/J.APENERGY.2015.08.109

    Article  Google Scholar 

  44. Tatsidjodoung P, Le Pierrès N, Heintz J et al (2016) Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Convers Manag 108:488–500. https://doi.org/10.1016/J.ENCONMAN.2015.11.011

    Article  Google Scholar 

  45. Gaeini M, Javed MR, Ouwerkerk H et al (2017) Realization of a 4 kW thermochemical segmented reactor in household scale for seasonal heat storage. Energy Proc 135:105–114. https://doi.org/10.1016/j.egypro.2017.09.491

    Article  Google Scholar 

  46. Li TX, Wu S, Yan T et al (2016) A novel solid–gas thermochemical multilevel sorption thermal battery for cascaded solar thermal energy storage. Appl Energy 161:1–10. https://doi.org/10.1016/j.apenergy.2015.09.084

    Article  Google Scholar 

  47. Li TX, Wu S, Yan T et al (2017) Experimental investigation on a dual-mode thermochemical sorption energy storage system. Energy 140:383–394. https://doi.org/10.1016/j.energy.2017.08.073

    Article  Google Scholar 

  48. Jiang L, Wang RZ, Wang LW, Roskilly AP (2017) Investigation on an innovative resorption system for seasonal thermal energy storage. Energy Convers Manag 149:129–139. https://doi.org/10.1016/j.enconman.2017.07.018

    Article  Google Scholar 

  49. Fumey B, Weber R, Baldini L (2017) Liquid sorption heat storage—a proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design. Appl Energy 200:215–225. https://doi.org/10.1016/j.apenergy.2017.05.056

    Article  Google Scholar 

  50. Daguenet-Frick X, Gantenbein P, Müller J et al (2017) Seasonal thermochemical energy storage: comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit. Renew Energy 110:162–173. https://doi.org/10.1016/j.renene.2016.10.005

    Article  Google Scholar 

  51. Le Pierrès N, Huaylla F, Stutz B, Perraud J (2017) Long-term solar heat storage process by absorption with the KCOOH/H2O couple: experimental investigation. Energy 141:1313–1323. https://doi.org/10.1016/j.energy.2017.10.111

    Article  Google Scholar 

  52. Gaeini M, Rouws AL, Salari JWO et al (2018) Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage. Appl Energy 212:1165–1177. https://doi.org/10.1016/j.apenergy.2017.12.131

    Article  Google Scholar 

  53. Semprini S, Asenbeck S, Kerskes H, Drück H (2017) Experimental and numerical investigations of an adsorption water-zeolite heat storage for refrigeration applications. Energy Proc 135:513–521. https://doi.org/10.1016/j.egypro.2017.09.492

    Article  Google Scholar 

  54. Köll R, van Helden W, Engel G et al (2017) An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Sol Energy 155:388–397. https://doi.org/10.1016/j.solener.2017.06.043

    Article  Google Scholar 

  55. Weber R, Asenbeck S, Kerskes H, Drück H (2016) SolSpaces—testing and performance analysis of a segmented sorption store for solar thermal space heating. Energy Proc 91:250–258. https://doi.org/10.1016/j.egypro.2016.06.214

    Article  Google Scholar 

  56. Dang BN, Van Helden W, Luke A (2017) Investigation of water evaporation for closed sorption storage systems. Energy Proc 135:504–512. https://doi.org/10.1016/j.egypro.2017.09.493

    Article  Google Scholar 

  57. Fopah-Lele A, Rohde C, Neumann K et al (2016) Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger. Energy 114:225–238. https://doi.org/10.1016/j.energy.2016.08.009

    Article  Google Scholar 

  58. Michel B, Mazet N, Neveu P (2014) Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance. Appl Energy 129:177–186. https://doi.org/10.1016/j.apenergy.2014.04.073

    Article  Google Scholar 

  59. Yan T, Wang RZ, Li TX (2018) Experimental investigation on thermochemical heat storage using manganese chloride/ammonia. Energy 143:562–574. https://doi.org/10.1016/j.energy.2017.11.030

    Article  Google Scholar 

  60. Aydin D, Casey SP, Chen X, Riffat S (2016) Novel “open-sorption pipe” reactor for solar thermal energy storage. Energy Convers Manag 121:321–334. https://doi.org/10.1016/j.enconman.2016.05.045

    Article  Google Scholar 

  61. Palomba V, Gordeeva L, Brancato V et al (2017) Experimental characterization of a lab-scale adsorption thermal storage based on the LiCl/vermiculite composite sorbent. In: International sorption heat pump conference. Tokyo

    Google Scholar 

  62. Nonnen T, Beckert S, Gleichmann K et al (2016) A thermochemical long-term heat storage system based on a salt/zeolite composite. Chem Eng Technol 39:2427–2434. https://doi.org/10.1002/ceat.201600301

    Article  Google Scholar 

  63. Zhao YJ, Wang RZ, Li TX, Nomura Y (2016) Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy. Energy 113:739–747. https://doi.org/10.1016/j.energy.2016.07.100

    Article  Google Scholar 

  64. Zhang YN, Wang RZ, Li TX (2017) Experimental investigation on an open sorption thermal storage system for space heating. Energy 141:2421–2433. https://doi.org/10.1016/j.energy.2017.12.003

    Article  Google Scholar 

  65. Aydin D, Casey SP, Chen X, Riffat S (2018) Numerical and experimental analysis of a novel heat pump driven sorption storage heater. Appl Energy 211:954–974. https://doi.org/10.1016/j.apenergy.2017.11.102

    Article  Google Scholar 

  66. Quinnell JA, Davidson JH (2012) Mass transfer during sensible charging of a hybrid absorption/sensible storage tank. Energy Proc 30:353–361. https://doi.org/10.1016/J.EGYPRO.2012.11.042

    Article  Google Scholar 

  67. N ‘Tsoukpoe KE, Le Pierrès N, Luo L (2012) Experimentation of a LiBr-H2O absorption process for long term solar thermal storage. Energy Proc 30:331–341. https://doi.org/10.1016/J.EGYPRO.2012.11.039

    Article  Google Scholar 

  68. Mette B, Kerskes H, Drück H, Müller-Steinhagen H (2013) New highly efficient regeneration process for thermochemical energy storage. Appl Energy 109:352–359. https://doi.org/10.1016/j.apenergy.2013.01.087

    Article  Google Scholar 

  69. Weber R, Kerskes H, Drück H (2014) Development of a combined hot water and sorption store for solar thermal systems. Energy Proc 48:464–473. https://doi.org/10.1016/j.egypro.2014.02.055

    Article  Google Scholar 

  70. Schreiber H, Lanzerath F, Reinert C et al (2016) Heat lost or stored: Experimental analysis of adsorption thermal energy storage. Appl Therm Eng 106:981–991. https://doi.org/10.1016/j.applthermaleng.2016.06.058

    Article  Google Scholar 

  71. De Boer R, Haije WG, Veldhuis JBJ, Smeding SF (2004) Solid-sorption cooling with integrated thermal storage: the SWEAT prototype. In: Heat powered cycles, HPC 2004. Larnaca

    Google Scholar 

  72. Zondag H, Kikkert B, Smeding S et al (2013) Prototype thermochemical heat storage with open reactor system. Appl Energy 109:360–365. https://doi.org/10.1016/j.apenergy.2013.01.082

    Article  Google Scholar 

  73. Stitou D, Mazet N, Mauran S (2012) Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning. Energy 41:261–270. https://doi.org/10.1016/j.energy.2011.07.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Frazzica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frazzica, A., Brancato, V., Palomba, V., Vasta, S. (2019). Sorption Thermal Energy Storage. In: Frazzica, A., Cabeza, L. (eds) Recent Advancements in Materials and Systems for Thermal Energy Storage. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96640-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96640-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96639-7

  • Online ISBN: 978-3-319-96640-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics