Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In the present chapter, an introduction about latent TES technology is reported. Requirements and different types of phase change materials (PCM) are discussed. Finally, a short introduction to PCM composites is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. An up to date introduction into basics and applications. Springer, Berlin

    Google Scholar 

  2. Bruno F, Belusko M, Liu M, Tay NHS (2015) Using solid-liquid phase change materials (PCMs) in thermal energy storage systems. In: Cabeza LF (ed) Advances in thermal energy storage systems. Methods and applications. Woodhead Publishing, pp 201–246

    Google Scholar 

  3. Paksoy HO (ed) (2007) Thermal energy storage for sustainable energy consumption [electronic resource]: fundamentals, case studies and design. Springer, Dordrecht

    Google Scholar 

  4. Cabeza LF, Tay NHS (2018) High-temperature thermal storage systems using phase change materials. Elsevier

    Google Scholar 

  5. Barreneche C, Solé A, Martorell I, Martínez M, Cabeza LF, Fernández AI (2014) Thermal energy storage (TES): requirements and constrains for a material-based design. In: Materials Science and Technology Conference and Exhibition 2014, MS and T 2014, vol 3, pp 1651–1658

    Google Scholar 

  6. Miró L, Barreneche C, Ferrer G, Solé A, Martorell I, Cazeza LF (2016) Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochim Acta 627–629:39–47

    Article  Google Scholar 

  7. Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30:313–332

    Article  Google Scholar 

  8. Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  9. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45(9–10):1597–1615

    Article  Google Scholar 

  10. Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Revew Sustain Energy Rev 11:1913–1965

    Article  Google Scholar 

  11. Sharma A, Tyagi V, Chen C, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  Google Scholar 

  12. Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628

    Article  Google Scholar 

  13. Haillot D, Bauer T, Kröner U, Tamme R (2011) Thermal analysis of phase change materials in the temperature range 120–150 °C. Thermochim Acta 513(1–2):49–59

    Article  Google Scholar 

  14. Oró E, de Gracia A, Castell A, Farid M, Cabeza LF (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533

    Article  Google Scholar 

  15. Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Revew Sustain Energy Rev 16(4):2118–2132

    Article  Google Scholar 

  16. Li G, Hwang Y, Radermacher R, Chun HH (2013) Review of cold storage materials for subzero applications. Energy 51:1–17

    Article  Google Scholar 

  17. Brancato V, Frazzica A, Sapienza A, Freni A (2016) Identification and characterization of promising phase change materials for solar cooling applications. Sol Energy Mater Sol Cells 160:225–232

    Article  Google Scholar 

  18. Chandel SS, Agarwal T (2017) Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Revew Sustain Energy Rev 67:581–596

    Article  Google Scholar 

  19. Du K, Calautit J, Wang Z, Wu Y, Liu H (2018) A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Appl Energy 220:242–273

    Article  Google Scholar 

  20. Solé A, Neumann H, Niedermaier S, Martorell I, Schossig P, Cabeza LF (2014) Stability of sugar alcohols as PCM for thermal energy storage. Sol Energy Mater Sol Cells 126:125–134

    Article  Google Scholar 

  21. Fernández AI, Barreneche C, Belusko M, Segarra M, Bruno F, Cabeza LF (2017) Considerations for the use of metal alloys as phase change materials for high temperature applications. Sol Energy Mater Sol Cells 171:275–281

    Article  Google Scholar 

  22. Zhang P, Xiao X, Ma ZW (2016) A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy 165:472–510

    Article  Google Scholar 

  23. Fang G, Tang F, Cao L (2014) Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renew Sustain Energy Rev 40:237–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa F. Cabeza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cabeza, L.F. (2019). Latent Thermal Energy Storage. In: Frazzica, A., Cabeza, L. (eds) Recent Advancements in Materials and Systems for Thermal Energy Storage. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96640-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96640-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96639-7

  • Online ISBN: 978-3-319-96640-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics