Skip to main content

Rigid Jeffcott Rotor Bifurcation Behaviour Using Different Models of Hydrodynamic Bearings

  • Conference paper
  • First Online:
Dynamical Systems in Theoretical Perspective (DSTA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 248))

Included in the following conference series:

  • 824 Accesses

Abstract

The paper studies dynamical behaviour of Jeffcott rotor supported by a hydrodynamic bearings. It uses different analytical formulations for hydrodynamic bearing forces acting on Jeffcott rotor. The model is nonlinear due to the presence of hydrodynamic bearings and can show different subharmonic behaviour like oil whip and oil whirl. Such a system is subjected to dynamical analysis using numerical continuation aimed at detection of nonlinear phenomena like bifurcations and unstable behaviours with respect to basic system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amamou, A., Chouchane, M.: Nonlinear stability analysis of long hydrodynamic journal bearings using numerical continuation. Mech. Mach. Theory 72, 17–24 (2014)

    Article  Google Scholar 

  2. Awrejcewicz, J., Kudra, G.: Mathematical modelling and simulation of the bifurcationalwobblestone dynamics. Discontinuity Nonlinearity Complex. 3(2), 123–132 (2014)

    Article  Google Scholar 

  3. Awrejcewicz, J., Kudra, G., Wasilewski, G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dyn. 50(4), 755–766 (2007)

    Article  Google Scholar 

  4. Awrejcewicz J., Kudra, G., Wasilewski, G.: Chaotic zones in triple pendulum dynamics observed experimentally and numerically. In: New Trends in Mechanics and Transport, volume 9 ofApplied Mechanics and Materials, pp. 1–17. Trans Tech Publications, 3 2008

    Google Scholar 

  5. Bastani, Y.: A new analytic approximation for the hydrodynamic forces in finite-length journal bearings. J. Tribol. 132(1), 014502–01–014502–9 (2010)

    Google Scholar 

  6. Boyaci, A.: Numerical continuation applied to nonlinear rotor dynamics. Procedia IUTAM 19(Supplement C), 255–265 (2016). IUTAM Symposium Analytical Methods in Nonlinear Dynamics

    Google Scholar 

  7. Buckholz, R.H., Hwang, B.: The accuracy of short bearing theory for newtonian lubricants. J. Tribol. 108(1), 73–79 (1986)

    Article  Google Scholar 

  8. Chouchane, M., Amamou, A.: Bifurcation of limit cycles in fluid film bearings. Int. J. Non-Linear Mech. 46(9), 1258–1264 (2011)

    Article  Google Scholar 

  9. Gasch, R.: Dynamic behaviour of the laval rotor with a transverse crack. Mech. Syst. Sig. Process. 22(4), 790 – 804 (2008). Special Issue: Crack Effects in Rotordynamics

    Google Scholar 

  10. Govaerts, W., Kuznetsov, Y.A., De Vitte, V., Dhooge, A., Meijer, M.G.E., Mestrom, W., Riet, A.M., Sautois, B.: Matcont and cl\(\_\)matcont: Continuation toolboxes in matlab (2011)

    Google Scholar 

  11. Ishida, Y.: Cracked rotors: industrial machine case histories and nonlinear effects shown by simple jeffcott rotor. Mech. Syst. Sig. Process. 22(4), 805 – 817 (2008). Special Issue: Crack Effects in Rotordynamics

    Google Scholar 

  12. Jeffcott, H.H.: Xxvii. the lateral vibration of loaded shafts in the neighbourhood of a whirling speed. The effect of want of balance. Philos. Mag. 37(219), 304–314 (1919)

    Article  Google Scholar 

  13. Kim, S., Palazzolo, A.B.: Effects of thermo hydrodynamic (THD) floating ring bearing model on rotordynamic bifurcation. Int. J. Non-Linear Mech. 95, 30–41 (2017)

    Article  Google Scholar 

  14. Li, W., Yang, Y., Sheng, D., Chen, J.: A novel nonlinear model of rotor/bearing/seal system and numerical analysis. Mech. Mach. Theory 46(5), 618–631 (2011)

    Article  Google Scholar 

  15. Ocvirk, F.W.: Short-bearing approximation for full journal bearings. Technical Report, Cornell University, 10 1952

    Google Scholar 

  16. Sghir, R., Chouchane, M.: Nonlinear stability analysis of a flexible rotor-bearing system by numerical continuation. J. Vibr. Control 22(13), 3079–3089 (2016)

    Article  MathSciNet  Google Scholar 

  17. Sommerfeld, A.: Zur hydrodynamischen theorie der schmiermittelreibung. Z. Math. Phys. 50(1–2), 97–155 (1904)

    MATH  Google Scholar 

  18. Vlajic, N., Champneys, A.R., Balachandran, B.: Nonlinear dynamics of a jeffcott rotor with torsional deformations and rotor-stator contact. Int. J. Non-Linear Mech. 92, 102–110 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported by the project No. 17-15915S of the Czech Science Foundation entitled Nonlinear dynamics of rotating systems considering fluid film instabilities with the emphasis on local effects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Byrtus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Byrtus, M., Dyk, Š. (2018). Rigid Jeffcott Rotor Bifurcation Behaviour Using Different Models of Hydrodynamic Bearings. In: Awrejcewicz, J. (eds) Dynamical Systems in Theoretical Perspective. DSTA 2017. Springer Proceedings in Mathematics & Statistics, vol 248. Springer, Cham. https://doi.org/10.1007/978-3-319-96598-7_7

Download citation

Publish with us

Policies and ethics