Skip to main content

Implementation of the Adaptive Control Algorithm for the KUKA LWR 4+ Robot

  • Conference paper
  • First Online:
Dynamical Systems in Theoretical Perspective (DSTA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 248))

Included in the following conference series:

  • 883 Accesses

Abstract

Model-based control methods are very attractive in the field of robotics as their tracking performance can exceed the classical controllers (such as the independent joint PID controllers). Using the dynamic model of the manipulator, however, requires detailed knowledge about the manipulator’s dynamic parameters such as link masses and inertias or joint friction properties. These parameters are not always easily identifiable and, to some degree, might vary between robots of one kind (e.g. slight differences in masses/inertias) or during the robot operation (e.g. friction changes related to the temperature). Thus, the identified model might not always be suitable for the desired control tasks. A possible method to overcome the aforementioned problems is to use the adaptive control scheme. In that approach, the parameters of the model are constantly updating their values in real-time to assure good tracking performance. This paper deals with the implementation of such an adaptive controller for the KUKA LWR 4+ robot. Using the KUKA’s communication protocols, a C++ implementation of the outer-loop adaptive controller (which feeds the KUKA controller with the desired joint torques) was created and its quality evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awrejcewicz, J., Olejnik, P.: Stick-slip dynamics of a two-degree-of-freedom system. Int. J. Bifurcation Chaos 13(04), 843–861 (2003). URL https://www.worldscientific.com/doi/abs/10.1142/S0218127403006960

  2. Bargsten, V., Zometa, P., Findeisen, R.: Modeling, parameter identification and model-based control of a lightweight robotic manipulator. In: 2013 IEEE International Conference on Control Applications (CCA), pp. 134–139 (2013). https://doi.org/10.1109/CCA.2013.6662756

  3. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schaeffer, A., Beyer, A., Eiberger, O., Haddadin, S., Stemmer, A., Grunwald, G., Hirzinger, G.: The KUKA-DLR lightweight robot arm – a new reference platform for robotics research and manufacturing. In: ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pp. 1–8 (2010)

    Google Scholar 

  4. Bottero, A., Gerio, G., Perna, V., Gagliano, A.: Adaptive control techniques and feed forward compensation of periodic disturbances in industrial manipulators. In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–7 (2014). https://doi.org/10.1109/MESA.2014.6935612

  5. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H.: Adaptive control of an exoskeleton robot with uncertainties on kinematics and dynamics. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1369–1374, (2017). https://doi.org/10.1109/ICORR.2017.8009439

  6. Flacco, F., De Luca, A.: Discrete-time redundancy resolution at the velocity level with acceleration/torque optimization properties. Rob. Autonomous Syst. 70, 191–201 (2015). https://doi.org/10.1016/j.robot.2015.02.008, URL http://www.sciencedirect.com/science/article/pii/S0921889015000329

  7. Gaz, C., Flacco, F., Luca, A.D.: Identifying the dynamic model used by the KUKA LWR: a reverse engineering approach. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1386–1392 (2014). https://doi.org/10.1109/ICRA.2014.6907033

  8. Gaz, C., Flacco, F., Luca, A.D.: Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2075–2081, (2016) https://doi.org/10.1109/ICRA.2016.7487356

  9. Hao, J., Tao, G., Rugthum, T.: A dynamic prediction error based adaptive multiple-model control scheme for robotic manipulators. In: 2017 American Control Conference (ACC), pp. 1791–1796 (2017). https://doi.org/10.23919/ACC.2017.7963212

  10. Hayat, R., Buss, M.: Model identification for robot manipulators using regressor-free adaptive control. In: 2016 UKACC 11th International Conference on Control (CONTROL), pp. 1–7 (2016). https://doi.org/10.1109/CONTROL.2016.7737544

  11. Jubien, A., Gautier, M., Janot, A.: Dynamic identification of the Kuka LightWeight robot: comparison between actual and confidential KUKA’s parameters. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2014, Besancon, France, pp. 483–488 (2014)

    Google Scholar 

  12. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  13. Kawasaki, H., Bito, T., Kanzaki, K.: An efficient algorithm for the model-based adaptive control of robotic manipulators. IEEE Trans. Rob. Autom. 12(3), 496–501 (1996)

    Article  Google Scholar 

  14. Kelly, J., Davila, V.S., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)

    Google Scholar 

  15. Kröger, T.: Fast Research Interface Library. http://cs.stanford.edu/people/tkr/fri/html/annotated.html (2014). online; Accessed: 25 Apr (2017)

  16. KUKA (06.07.2010) Lightweight Robot 4+ Specification, Version: Spez LBR 4+ V2en

    Google Scholar 

  17. Lewis, F.W., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice. CRC Press (2003)

    Google Scholar 

  18. Li, J., Ma, H., Yang, C., Fu, M.: Discrete-time adaptive control of robot manipulator with payload uncertainties. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1971–1976 (2015) https://doi.org/10.1109/CYBER.2015.7288249

  19. Li, M., Li, Y., Ge, S.S., Lee, T.H.: Adaptive control of robotic manipulators with unified motion constraints. IEEE Trans. Syst.ems, Man, and Cyber.: Syst. 47(1), 184–194 (2017). https://doi.org/10.1109/TSMC.2016.2608969

  20. Olejnik, P., Awrejcewicz, J., Fečkan, M.: Modeling. With Friction and Impacts. World Scientific Publishing Company, Analysis and Control of. Dynamical Systems (2017). https://doi.org/10.1142/10577

    Article  Google Scholar 

  21. Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for manipulator modelling and control. Int. J. Rob. Res. 10(4), 371–381 (1991)

    Article  Google Scholar 

  22. Schreiber, G., Stemmer, A., Bischoff, R.: The fast research interface for the KUKA lightweight robot. In: Proceedings of the IEEE ICRA 2010 Workshop on ICRA 2010 Workshop on Innovative Robot Control Architectures for Demanding (Research) Applications – How to Modify and Enhance Commercial Controllers, pp. 15–21 (2010)

    Google Scholar 

  23. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-32552-1

  24. Slotine, J.J.E., Bito, T., Li, W.: On the adaptive control of robot manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  25. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley (2006)

    Google Scholar 

  26. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal robot excitation and identification. IEEE Trans. Rob. Autom. 13(5), 730–740 (1997)

    Article  Google Scholar 

  27. Swevers, J., Verdonck, W., De Schutter, J.: Dynamic model identification for industrial robots. IEEE Control Syst. 27(5), 58–71 (2007)

    Article  MathSciNet  Google Scholar 

  28. Woliński, L., Malczyk, P.: Dynamic modeling and analysis of a lightweight robotic manipulator in joint space. Arch. Mechanical Eng. 62(2), 279–302 (2015). http://dx.doi.org/10.1515/meceng-2015-0016, https://doi.org/10.1023/A:1021909032551

  29. Woliński, L., Wojtyra, M.: Comparison of dynamic properties of two LWR 4+ robots. In: ROMANSY 21 - Robot Design, Dynamics and Control. Proceedings of the 21st CISM-IFToMM Symposium, vol. 569, pp. 413–420 (2016) https://doi.org/10.1007/978-3-319-33714-2

Download references

Acknowledgements

This work was supported by the Faculty of Power and Aeronautical Engineering Dean’s Grant for year 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Woliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Woliński, Ł. (2018). Implementation of the Adaptive Control Algorithm for the KUKA LWR 4+ Robot. In: Awrejcewicz, J. (eds) Dynamical Systems in Theoretical Perspective. DSTA 2017. Springer Proceedings in Mathematics & Statistics, vol 248. Springer, Cham. https://doi.org/10.1007/978-3-319-96598-7_31

Download citation

Publish with us

Policies and ethics