Skip to main content

Functional Cross-Sectional Imaging Techniques in Crohn’s Disease

  • Chapter
  • First Online:
Book cover Cross-Sectional Imaging in Crohn’s Disease

Abstract

Imaging Crohn’s disease poses significant challenges, particularly in precisely defining disease activity and monitoring the adequacy of therapeutic response. Observations based on the structure of the bowel and extra-enteric tissues are the mainstay of radiological interpretation. However, functional techniques which extract information beyond simple anatomy also show considerable promise and may contribute to individualised management of Crohn’s disease patients. In this chapter, we summarise the importance and challenges posed by cross-sectional imaging of the bowel, focusing on magnetic resonance enterography (MRE). We then consider MR techniques that provide functional evaluation of the bowel over and above structure, including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) imaging and assessment of bowel motility. Finally, we summarise the emerging data on the potential utility of positron emission tomography-magnet resonance imaging (PET-MRI) and positron emission tomography-computed tomography (PET-CT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farmer RG, Whelan G, Fazio VW. Long-term follow-up of patients with Crohn’s disease. Relationship between the clinical pattern and prognosis. Gastroenterology. 1985;88:1818–25.

    Article  CAS  PubMed  Google Scholar 

  2. Sands BE. From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. Gastroenterology. 2004;126:1518–32.

    Article  PubMed  Google Scholar 

  3. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    Article  CAS  PubMed  Google Scholar 

  4. Van Assche G, Dignass A, Panes J, et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. J Crohns Colitis. 2010;4:7–27.

    Article  PubMed  Google Scholar 

  5. Farmer RG, Hawk WA, Turnbull RB Jr. Clinical patterns in Crohn’s disease: a statistical study of 615 cases. Gastroenterology. 1975;68:627–35.

    CAS  PubMed  Google Scholar 

  6. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998;115:182–205.

    Article  CAS  PubMed  Google Scholar 

  7. Louis E, Collard A, Oger AF, Degroote E, Aboul Nasr El Yafi FA, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut. 2001;49:777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lichtenstein GR, Hanauer SB, Sandborn WJ, Practice Parameters Committee of American College of Gastroenterology. Management of Crohn’s disease in adults. Am J Gastroenterol. 2009;104:465–83. quiz 4, 84

    Article  PubMed  Google Scholar 

  9. Benitez JM, Meuwis MA, Reenaers C, Van Kemseke C, Meunier P, Louis E. Role of endoscopy, cross-sectional imaging and biomarkers in Crohn’s disease monitoring. Gut. 2013;62:1806–16.

    Article  PubMed  Google Scholar 

  10. Pariente B, Peyrin-Biroulet L, Cohen L, Zagdanski AM, Colombel JF. Gastroenterology review and perspective: the role of cross-sectional imaging in evaluating bowel damage in Crohn disease. AJR Am J Roentgenol. 2011;197:42–9.

    Article  PubMed  Google Scholar 

  11. Magro F, Langner C, Driessen A, et al. European consensus on the histopathology of inflammatory bowel disease. J Crohns Colitis. 2013;7:827–51.

    Article  CAS  PubMed  Google Scholar 

  12. Otterson MF, Lundeen SJ, Spinelli KS, et al. Radiographic underestimation of small bowel stricturing Crohn’s disease: a comparison with surgical findings. Surgery. 2004;136:854–60.

    Article  PubMed  Google Scholar 

  13. Travis SP, Stange EF, Lemann M, et al. European evidence based consensus on the diagnosis and management of Crohn’s disease: current management. Gut. 2006;55(Suppl 1):i16–35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Taylor SA, Avni F, Cronin CG, et al. The first joint ESGAR/ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging. Eur Radiol. 2017;27:2570–82.

    Article  CAS  PubMed  Google Scholar 

  15. Hara AK, Leighton JA, Heigh RI, et al. Crohn disease of the small bowel: preliminary comparison among CT enterography, capsule endoscopy, small-bowel follow-through, and ileoscopy. Radiology. 2006;238:128–34.

    Article  PubMed  Google Scholar 

  16. Lee SS, Ha HK, Yang SK, et al. CT of prominent pericolic or perienteric vasculature in patients with Crohn’s disease: correlation with clinical disease activity and findings on barium studies. AJR Am J Roentgenol. 2002;179:1029–36.

    Article  PubMed  Google Scholar 

  17. Siddiki HA, Fidler JL, Fletcher JG, et al. Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel Crohn’s disease. AJR Am J Roentgenol. 2009;193:113–21.

    Article  PubMed  Google Scholar 

  18. Higgins PD, Caoili E, Zimmermann M, et al. Computed tomographic enterography adds information to clinical management in small bowel Crohn’s disease. Inflamm Bowel Dis. 2007;13:262–8.

    Article  PubMed  Google Scholar 

  19. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140:1785–94.

    Article  PubMed  Google Scholar 

  20. Chatu S, Subramanian V, Pollok RC. Meta-analysis: diagnostic medical radiation exposure in inflammatory bowel disease. Aliment Pharmacol Ther. 2012;35:529–39.

    Article  CAS  PubMed  Google Scholar 

  21. Desmond AN, O’Regan K, Curran C, et al. Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut. 2008;57:1524–9.

    Article  CAS  PubMed  Google Scholar 

  22. Allen PB, De Cruz P, Lee WK, Taylor S, Desmond PV, Kamm MA. Noninvasive imaging of the small bowel in Crohn’s disease: the final frontier. Inflamm Bowel Dis. 2011;17:1987–99.

    Article  PubMed  Google Scholar 

  23. Dohan A, Taylor S, Hoeffel C, et al. Diffusion-weighted MRI in Crohn’s disease: current status and recommendations. J Magn Reson Imaging. 2016;44:1381–96.

    Article  PubMed  Google Scholar 

  24. Bruining DH, Bhatnagar G, Rimola J, Taylor S, Zimmermann EM, Fletcher JG. CT and MR enterography in Crohn’s disease: current and future applications. Abdom Imaging. 2015;40:965–74.

    Article  PubMed  Google Scholar 

  25. Rimola J, Panes J, Ordas I. Magnetic resonance enterography in Crohn’s disease: optimal use in clinical practice and clinical trials. Scand J Gastroenterol. 2015;50:66–73.

    Article  PubMed  Google Scholar 

  26. Kumar S, Hakim A, Alexakis C, et al. Small intestinal contrast ultrasonography for the detection of small bowel complications in Crohn’s disease: correlation with intraoperative findings and magnetic resonance enterography. J Gastroenterol Hepatol. 2015;30:86–91.

    Article  PubMed  Google Scholar 

  27. Grand DJ, Guglielmo FF, Al-Hawary MM. MR enterography in Crohn’s disease: current consensus on optimal imaging technique and future advances from the SAR Crohn’s disease-focused panel. Abdom Imaging. 2015;40:953–64.

    Article  PubMed  Google Scholar 

  28. Park SH. DWI at MR Enterography for evaluating bowel inflammation in Crohn disease. AJR Am J Roentgenol. 2016;207:40–8.

    Article  PubMed  Google Scholar 

  29. Rimola J, Alvarez-Cofino A, Perez-Jeldres T, et al. Increasing efficiency of MRE for diagnosis of Crohn’s disease activity through proper sequence selection: a practical approach for clinical trials. Abdom Radiol (NY). 2017;42:2783–91.

    Article  Google Scholar 

  30. Bhatnagar G, Von Stempel C, Halligan S, Taylor SA. Utility of MR enterography and ultrasound for the investigation of small bowel Crohn’s disease. J Magn Reson Imaging. 2017;45:1573–88.

    Article  PubMed  Google Scholar 

  31. Steward MJ, Punwani S, Proctor I, et al. Non-perforating small bowel Crohn’s disease assessed by MRI enterography: derivation and histopathological validation of an MR-based activity index. Eur J Radiol. 2012;81:2080–8.

    Article  PubMed  Google Scholar 

  32. Makanyanga JC, Pendse D, Dikaios N, et al. Evaluation of Crohn’s disease activity: initial validation of a magnetic resonance enterography global score (MEGS) against faecal calprotectin. Eur Radiol. 2014;24:277–87.

    Article  PubMed  Google Scholar 

  33. Rimola J, Rodriguez S, Garcia-Bosch O, et al. Magnetic resonance for assessment of disease activity and severity in ileocolonic Crohn’s disease. Gut. 2009;58:1113–20.

    Article  CAS  PubMed  Google Scholar 

  34. Rimola J, Ordas I, Rodriguez S, et al. Magnetic resonance imaging for evaluation of Crohn’s disease: validation of parameters of severity and quantitative index of activity. Inflamm Bowel Dis. 2011;17:1759–68.

    Article  PubMed  Google Scholar 

  35. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    Article  PubMed  Google Scholar 

  36. Chilla GS, Tan CH, Xu C, Poh CL. Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg. 2015;5:407–22.

    PubMed  PubMed Central  Google Scholar 

  37. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics. 2009;29:1797–810.

    Article  PubMed  Google Scholar 

  38. Barral M, Taouli B, Guiu B, et al. Diffusion-weighted MR imaging of the pancreas: current status and recommendations. Radiology. 2015;274:45–63.

    Article  PubMed  Google Scholar 

  39. Tielbeek JA, Ziech ML, Li Z, et al. Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn’s disease assessment with histopathology of surgical specimens. Eur Radiol. 2014;24:619–29.

    Article  PubMed  Google Scholar 

  40. Hordonneau C, Buisson A, Scanzi J, et al. Diffusion-weighted magnetic resonance imaging in ileocolonic Crohn’s disease: validation of quantitative index of activity. Am J Gastroenterol. 2014;109:89–98.

    Article  CAS  PubMed  Google Scholar 

  41. Oto A, Kayhan A, Williams JT, et al. Active Crohn’s disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging. 2011;33:615–24.

    Article  PubMed  Google Scholar 

  42. Kiryu S, Dodanuki K, Takao H, et al. Free-breathing diffusion-weighted imaging for the assessment of inflammatory activity in Crohn’s disease. J Magn Reson Imaging. 2009;29:880–6.

    Article  PubMed  Google Scholar 

  43. Freiman M, Perez-Rossello JM, Callahan MJ, et al. Characterization of fast and slow diffusion from diffusion-weighted MRI of pediatric Crohn’s disease. J Magn Reson Imaging. 2013;37:156–63.

    Article  PubMed  Google Scholar 

  44. Neubauer H, Pabst T, Dick A, et al. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol. 2013;43:103–14.

    Article  PubMed  Google Scholar 

  45. Buisson A, Joubert A, Montoriol PF, et al. Diffusion-weighted magnetic resonance imaging for detecting and assessing ileal inflammation in Crohn’s disease. Aliment Pharmacol Ther. 2013;37:537–45.

    Article  CAS  PubMed  Google Scholar 

  46. Oussalah A, Laurent V, Bruot O, et al. Diffusion-weighted magnetic resonance without bowel preparation for detecting colonic inflammation in inflammatory bowel disease. Gut. 2010;59:1056–65.

    Article  PubMed  Google Scholar 

  47. Feng Q, Yan YQ, Zhu J, Tong JL, Xu JR. Optimal b value of diffusion-weighted imaging on a 3.0T magnetic resonance scanner in Crohn’s disease. World J Gastroenterol. 2014;20:12621–7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grand DJ, Beland MD, Machan JT, Mayo-Smith WW. Detection of Crohn’s disease: comparison of CT and MR enterography without anti-peristaltic agents performed on the same day. Eur J Radiol. 2012;81:1735–41.

    Article  PubMed  Google Scholar 

  49. Grand DJ, Kampalath V, Harris A, et al. MR enterography correlates highly with colonoscopy and histology for both distal ileal and colonic Crohn’s disease in 310 patients. Eur J Radiol. 2012;81:e763–9.

    Article  PubMed  Google Scholar 

  50. Park SH, Huh J, Park SH, Lee SS, Kim AY, Yang SK. Diffusion-weighted MR enterography for evaluating Crohn’s disease: effect of anti-peristaltic agent on the diagnosis of bowel inflammation. Eur Radiol. 2017;27:2554–62.

    Article  PubMed  Google Scholar 

  51. Stanescu-Siegmund N, Nimsch Y, Wunderlich AP, et al. Quantification of inflammatory activity in patients with Crohn’s disease using diffusion weighted imaging (DWI) in MR enteroclysis and MR enterography. Acta Radiol. 2017;58:264–71.

    Article  PubMed  Google Scholar 

  52. Jesuratnam-Nielsen K, Logager VB, Rezanavaz-Gheshlagh B, Munkholm P, Thomsen HS. Plain magnetic resonance imaging as an alternative in evaluating inflammation and bowel damage in inflammatory bowel disease—a prospective comparison with conventional magnetic resonance follow-through. Scand J Gastroenterol. 2015;50:519–27.

    Article  PubMed  Google Scholar 

  53. Cronin CG, Lohan DG, Mhuircheartaigh JN, et al. MRI small-bowel follow-through: prone versus supine patient positioning for best small-bowel distention and lesion detection. AJR Am J Roentgenol. 2008;191:502–6.

    Article  PubMed  Google Scholar 

  54. Caruso A, D’Inca R, Scarpa M, et al. Diffusion-weighted magnetic resonance for assessing ileal Crohn’s disease activity. Inflamm Bowel Dis. 2014;20:1575–83.

    Article  PubMed  Google Scholar 

  55. Kim KJ, Lee Y, Park SH, et al. Diffusion-weighted MR enterography for evaluating Crohn’s disease: how does it add diagnostically to conventional MR enterography? Inflamm Bowel Dis. 2015;21:101–9.

    Article  CAS  PubMed  Google Scholar 

  56. Qi F, Jun S, Qi QY, et al. Utility of the diffusion-weighted imaging for activity evaluation in Crohn’s disease patients underwent magnetic resonance enterography. BMC Gastroenterol. 2015;15:12.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Foti PV, Farina R, Coronella M, et al. Crohn’s disease of the small bowel: evaluation of ileal inflammation by diffusion-weighted MR imaging and correlation with the Harvey-Bradshaw index. Radiol Med. 2015;120:585–94.

    Article  PubMed  Google Scholar 

  58. Li XH, Sun CH, Mao R, et al. Assessment of activity of Crohn disease by diffusion-weighted magnetic resonance imaging. Medicine (Baltimore). 2015;94:e1819.

    Article  CAS  Google Scholar 

  59. Sato H, Tamura C, Narimatsu K, et al. Magnetic resonance enterocolonography in detecting erosion and redness in intestinal mucosa of patients with Crohn’s disease. J Gastroenterol Hepatol. 2015;30:667–73.

    Article  PubMed  Google Scholar 

  60. Church PC, Greer MC, Cytter-Kuint R, et al. Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric Crohn disease. Pediatr Radiol. 2017;47:565–75.

    Article  PubMed  Google Scholar 

  61. Oto A, Zhu F, Kulkarni K, Karczmar GS, Turner JR, Rubin D. Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn’s disease. Acad Radiol. 2009;16:597–603.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Seo N, Park SH, Kim KJ, et al. MR Enterography for the evaluation of small-bowel inflammation in Crohn disease by using diffusion-weighted imaging without intravenous contrast material: a prospective noninferiority study. Radiology. 2016;278:762–72.

    Article  PubMed  Google Scholar 

  63. Choi SH, Kim KW, Lee JY, Kim KJ, Park SH. Diffusion-weighted magnetic resonance enterography for evaluating bowel inflammation in Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis. 2016;22:669–79.

    Article  PubMed  Google Scholar 

  64. Plumb AA, Pendse DA, McCartney S, Punwani S, Halligan S, Taylor SA. Lymphoid nodular hyperplasia of the terminal ileum can mimic active crohn disease on MR enterography. AJR Am J Roentgenol. 2014;203:W400–7.

    Article  PubMed  Google Scholar 

  65. Daperno M, D’Haens G, Van Assche G, et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: the SES-CD. Gastrointest Endosc. 2004;60:505–12.

    Article  PubMed  Google Scholar 

  66. Ream JM, Dillman JR, Adler J, et al. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation. Pediatr Radiol. 2013;43:1077–85.

    Article  PubMed  Google Scholar 

  67. Buisson A, Hordonneau C, Goutte M, Boyer L, Pereira B, Bommelaer G. Diffusion-weighted magnetic resonance imaging is effective to detect ileocolonic ulcerations in Crohn’s disease. Aliment Pharmacol Ther. 2015;42:452–60.

    Article  CAS  PubMed  Google Scholar 

  68. Bhatnagar G, Dikaios N, Prezzi D, Vega R, Halligan S, Taylor SA. Changes in dynamic contrast-enhanced pharmacokinetic and diffusion-weighted imaging parameters reflect response to anti-TNF therapy in Crohn’s disease. Br J Radiol. 2015;88:20150547.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Huh J, Kim KJ, Park SH, et al. Diffusion-weighted MR Enterography to monitor bowel inflammation after medical therapy in Crohn’s disease: a prospective longitudinal study. Korean J Radiol. 2017;18:162–72.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dillman JR, Smith EA, Sanchez R, et al. DWI in pediatric small-bowel Crohn disease: are apparent diffusion coefficients surrogates for disease activity in patients receiving infliximab therapy? AJR Am J Roentgenol. 2016;207:1002–8.

    Article  PubMed  Google Scholar 

  71. Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015;276:228–32.

    Article  PubMed  Google Scholar 

  72. Dubron C, Avni F, Boutry N, Turck D, Duhamel A, Amzallag-Bellenger E. Prospective evaluation of free-breathing diffusion-weighted imaging for the detection of inflammatory bowel disease with MR enterography in childhood population. Br J Radiol. 2016;89:20150840.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alkim C, Alkim H, Koksal AR, Boga S, Sen I. Angiogenesis in inflammatory bowel disease. Int J Inflam. 2015;2015:970890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bacaner MB. Quantitative measurement of regional colon blood flow in the normal and pathological human bowel. Gastroenterology. 1966;51:764–77.

    CAS  PubMed  Google Scholar 

  75. Rutella S, Fiorino G, Vetrano S, et al. Infliximab therapy inhibits inflammation-induced angiogenesis in the mucosa of patients with Crohn’s disease. Am J Gastroenterol. 2011;106:762–70.

    Article  CAS  PubMed  Google Scholar 

  76. Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging. 2002;16:407–22.

    Article  PubMed  Google Scholar 

  77. Oommen J, Oto A. Contrast-enhanced MRI of the small bowel in Crohn’s disease. Abdom Imaging. 2011;36:134–41.

    Article  PubMed  Google Scholar 

  78. Boijsen E, Ekman CA, Lundh G. Selective splanchnic angiography. Adv Surg. 1968;3:13–73.

    CAS  PubMed  Google Scholar 

  79. Pendse DA, Makanyanga JC, Plumb AA, et al. Diffusion-weighted imaging for evaluating inflammatory activity in Crohn’s disease: comparison with histopathology, conventional MRI activity scores, and faecal calprotectin. Abdom Radiol (NY). 2017;42:115–23.

    Article  CAS  Google Scholar 

  80. Choi D, Jin Lee S, Ah Cho Y, et al. Bowel wall thickening in patients with Crohn’s disease: CT patterns and correlation with inflammatory activity. Clin Radiol. 2003;58:68–74.

    Article  PubMed  Google Scholar 

  81. Tolan DJ, Greenhalgh R, Zealley IA, Halligan S, Taylor SA. MR enterographic manifestations of small bowel Crohn disease. Radiographics. 2010;30:367–84.

    Article  PubMed  Google Scholar 

  82. Roccarina D, Garcovich M, Ainora ME, et al. Diagnosis of bowel diseases: the role of imaging and ultrasonography. World J Gastroenterol. 2013;19:2144–53.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alkim C, Savas B, Ensari A, et al. Expression of p53, VEGF, microvessel density, and cyclin-D1 in noncancerous tissue of inflammatory bowel disease. Dig Dis Sci. 2009;54:1979–84.

    Article  CAS  PubMed  Google Scholar 

  84. Danese S, Fiorino G, Angelucci E, et al. Narrow-band imaging endoscopy to assess mucosal angiogenesis in inflammatory bowel disease: a pilot study. World J Gastroenterol. 2010;16:2396–400.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Taylor SA, Punwani S, Rodriguez-Justo M, et al. Mural Crohn disease: correlation of dynamic contrast-enhanced MR imaging findings with angiogenesis and inflammation at histologic examination—pilot study. Radiology. 2009;251:369–79.

    Article  PubMed  Google Scholar 

  86. Makanyanga J, Punwani S, Taylor SA. Assessment of wall inflammation and fibrosis in Crohn’s disease: value of T1-weighted gadolinium-enhanced MR imaging. Abdom Imaging. 2012;37:933–43.

    Article  PubMed  Google Scholar 

  87. Li Z, Tielbeek JAW, Caan MWA, et al. Expiration-phase template-based motion correction of free-breathing abdominal dynamic contrast enhanced MRI. IEEE Trans Biomed Eng. 2015;62:1215–25.

    Article  PubMed  Google Scholar 

  88. Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes D. Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys Med Biol. 2007;52:5147–56.

    Article  CAS  PubMed  Google Scholar 

  89. Hamy V, Dikaios N, Punwani S, et al. Respiratory motion correction in dynamic MRI using robust data decomposition registration—application to DCE-MRI. Med Image Anal. 2014;18:301–13.

    Article  PubMed  Google Scholar 

  90. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  CAS  PubMed  Google Scholar 

  91. Maccioni F, Viscido A, Broglia L, et al. Evaluation of Crohn disease activity with magnetic resonance imaging. Abdom Imaging. 2000;25:219–28.

    Article  CAS  PubMed  Google Scholar 

  92. Sempere GA, Martinez Sanjuan V, Medina Chulia E, et al. MRI evaluation of inflammatory activity in Crohn’s disease. AJR Am J Roentgenol. 2005;184:1829–35.

    Article  PubMed  Google Scholar 

  93. Pupillo VA, Di Cesare E, Frieri G, Limbucci N, Tanga M, Masciocchi C. Assessment of inflammatory activity in Crohn’s disease by means of dynamic contrast-enhanced MRI. Radiol Med. 2007;112:798–809.

    Article  CAS  PubMed  Google Scholar 

  94. Del Vescovo R, Sansoni I, Caviglia R, et al. Dynamic contrast enhanced magnetic resonance imaging of the terminal ileum: differentiation of activity of Crohn’s disease. Abdom Imaging. 2008;33:417–24.

    Article  PubMed  Google Scholar 

  95. Knuesel PR, Kubik RA, Crook DW, Eigenmann F, Froehlich JM. Assessment of dynamic contrast enhancement of the small bowel in active Crohn’s disease using 3D MR enterography. Eur J Radiol. 2010;73:607–13.

    Article  PubMed  Google Scholar 

  96. Oto A, Fan X, Mustafi D, et al. Quantitative analysis of dynamic contrast enhanced MRI for assessment of bowel inflammation in Crohn’s disease pilot study. Acad Radiol. 2009;16:1223–30.

    Article  PubMed  Google Scholar 

  97. Horsthuis K, Nederveen AJ, de Feiter MW, Lavini C, Stokkers PC, Stoker J. Mapping of T1-values and gadolinium-concentrations in MRI as indicator of disease activity in luminal Crohn’s disease: a feasibility study. J Magn Reson Imaging. 2009;29:488–93.

    Article  PubMed  Google Scholar 

  98. Giusti S, Faggioni L, Neri E, et al. Dynamic MRI of the small bowel: usefulness of quantitative contrast-enhancement parameters and time-signal intensity curves for differentiating between active and inactive Crohn’s disease. Abdom Imaging. 2010;35:646–53.

    Article  PubMed  Google Scholar 

  99. Rottgen R, Grandke T, Grieser C, Lehmkuhl L, Hamm B, Ludemann L. Measurement of MRI enhancement kinetics for evaluation of inflammatory activity in Crohn’s disease. Clin Imaging. 2010;34:29–35.

    Article  PubMed  Google Scholar 

  100. Florie J, Wasser MN, Arts-Cieslik K, Akkerman EM, Siersema PD, Stoker J. Dynamic contrast-enhanced MRI of the bowel wall for assessment of disease activity in Crohn’s disease. AJR Am J Roentgenol. 2006;186:1384–92.

    Article  PubMed  Google Scholar 

  101. Ziech ML, Lavini C, Caan MW, et al. Dynamic contrast-enhanced MRI in patients with luminal Crohn’s disease. Eur J Radiol. 2012;81:3019–27.

    Article  CAS  PubMed  Google Scholar 

  102. van Schie JJN, Lavini C, van Vliet LJ, et al. Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (II): applications in spine diagnostics and assessment of Crohn’s disease. J Magn Reson Imaging. 2017;47(5):1197–204.

    Article  PubMed  Google Scholar 

  103. Zhu J, Zhang F, Zhou J, Li H. Assessment of therapeutic response in Crohn’s disease using quantitative dynamic contrast enhanced MRI (DCE-MRI) parameters: a preliminary study. Medicine (Baltimore). 2017;96:e7759.

    Article  Google Scholar 

  104. Patel P, Ormanoski M, Hoadley KM. Magnetic resonance enterography findings in Crohn’s disease in the pediatric population and correlation with fluoroscopic and multidetector computed tomographic techniques. J Clin Imaging Sci. 2011;1:41.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Maccioni F, Patak MA, Signore A, Laghi A. New frontiers of MRI in Crohn’s disease: motility imaging, diffusion-weighted imaging, perfusion MRI, MR spectroscopy, molecular imaging, and hybrid imaging (PET/MRI). Abdom Imaging. 2012;37:974–82.

    Article  PubMed  Google Scholar 

  106. de Jonge CS, Gollifer RM, Nederveen AJ, et al. Dynamic MRI for bowel motility imaging-how fast and how long? Br J Radiol. 2018:20170845.

    Google Scholar 

  107. de Jonge CS, Smout A, Nederveen AJ, Stoker J. Evaluation of gastrointestinal motility with MRI: advances, challenges and opportunities. Neurogastroenterol Motil 2018;30(1). doi: https://doi.org/10.1111/nmo.13257.

    Article  Google Scholar 

  108. Ghobrial PM, Neuberger I, Guglielmo FF, et al. Cine MR enterography grading of small bowel peristalsis: evaluation of the antiperistaltic effectiveness of sublingual hyoscyamine sulfate. Acad Radiol. 2014;21:86–91.

    Article  PubMed  Google Scholar 

  109. Bickelhaupt S, Froehlich JM, Cattin R, et al. Software-assisted quantitative analysis of small bowel motility compared to manual measurements. Clin Radiol. 2014;69:363–71.

    Article  CAS  PubMed  Google Scholar 

  110. Odille F, Menys A, Ahmed A, Punwani S, Taylor SA, Atkinson D. Quantitative assessment of small bowel motility by nonrigid registration of dynamic MR images. Magn Reson Med. 2012;68:783–93.

    Article  PubMed  Google Scholar 

  111. Froehlich JM, Waldherr C, Stoupis C, Erturk SM, Patak MA. MR motility imaging in Crohn’s disease improves lesion detection compared with standard MR imaging. Eur Radiol. 2010;20:1945–51.

    Article  PubMed  Google Scholar 

  112. Menys A, Atkinson D, Odille F, et al. Quantified terminal ileal motility during MR enterography as a potential biomarker of Crohn’s disease activity: a preliminary study. Eur Radiol. 2012;22:2494–501.

    Article  PubMed  Google Scholar 

  113. Cullmann JL, Bickelhaupt S, Froehlich JM, et al. MR imaging in Crohn’s disease: correlation of MR motility measurement with histopathology in the terminal ileum. Neurogastroenterol Motil. 2013;25:749-e577.

    Article  PubMed  Google Scholar 

  114. Hahnemann ML, Nensa F, Kinner S, et al. Quantitative assessment of small bowel motility in patients with Crohn’s disease using dynamic MRI. Neurogastroenterol Motil. 2015;27:841–8.

    Article  CAS  PubMed  Google Scholar 

  115. Akerman A, Mansson S, Fork FT, et al. Computational postprocessing quantification of small bowel motility using magnetic resonance images in clinical practice: an initial experience. J Magn Reson Imaging. 2016;44:277–87.

    Article  PubMed  Google Scholar 

  116. Plumb AA, Menys A, Russo E, et al. Magnetic resonance imaging-quantified small bowel motility is a sensitive marker of response to medical therapy in Crohn’s disease. Aliment Pharmacol Ther. 2015;42:343–55.

    Article  CAS  PubMed  Google Scholar 

  117. Menys A, Makanyanga J, Plumb A, et al. Aberrant motility in unaffected small bowel is linked to inflammatory burden and patient symptoms in Crohn’s disease. Inflamm Bowel Dis. 2016;22:424–32.

    Article  PubMed  Google Scholar 

  118. Bickelhaupt S, Pazahr S, Chuck N, et al. Crohn’s disease: small bowel motility impairment correlates with inflammatory-related markers C-reactive protein and calprotectin. Neurogastroenterol Motil. 2013;25:467–73.

    Article  CAS  PubMed  Google Scholar 

  119. Sotoudeh H, Sharma A, Fowler KJ, McConathy J, Dehdashti F. Clinical application of PET/MRI in oncology. J Magn Reson Imaging. 2016;44:265–76.

    Article  PubMed  Google Scholar 

  120. Malide D, Davies-Hill TM, Levine M, Simpson IA. Distinct localization of GLUT-1, -3, and -5 in human monocyte-derived macrophages: effects of cell activation. Am J Phys. 1998;274:E516–26.

    CAS  Google Scholar 

  121. Neurath MF, Vehling D, Schunk K, et al. Noninvasive assessment of Crohn’s disease activity: a comparison of 18F-fluorodeoxyglucose positron emission tomography, hydromagnetic resonance imaging, and granulocyte scintigraphy with labeled antibodies. Am J Gastroenterol. 2002;97:1978–85.

    Article  CAS  PubMed  Google Scholar 

  122. Louis E, Ancion G, Colard A, Spote V, Belaiche J, Hustinx R. Noninvasive assessment of Crohn’s disease intestinal lesions with (18)F-FDG PET/CT. J Nucl Med. 2007;48:1053–9.

    Article  PubMed  Google Scholar 

  123. Bettenworth D, Reuter S, Hermann S, et al. Translational 18F-FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. J Nucl Med. 2013;54:748–55.

    Article  CAS  PubMed  Google Scholar 

  124. Groshar D, Bernstine H, Stern D, et al. PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18F-FDG uptake. J Nucl Med. 2010;51:1009–14.

    Article  PubMed  Google Scholar 

  125. Saboury B, Salavati A, Brothers A, et al. FDG PET/CT in Crohn’s disease: correlation of quantitative FDG PET/CT parameters with clinical and endoscopic surrogate markers of disease activity. Eur J Nucl Med Mol Imaging. 2014;41:605–14.

    Article  CAS  PubMed  Google Scholar 

  126. Russo EA, Khan S, Janisch R, et al. Role of 18F-fluorodeoxyglucose positron emission tomography in the monitoring of inflammatory activity in Crohn’s disease. Inflamm Bowel Dis. 2016;22:2619–29.

    Article  PubMed  Google Scholar 

  127. Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol. 2014;83:84–94.

    Article  PubMed  Google Scholar 

  128. Pellino G, Nicolai E, Catalano OA, et al. PET/MR versus PET/CT imaging: impact on the clinical management of small-bowel Crohn’s disease. J Crohns Colitis. 2016;10:277–85.

    Article  PubMed  Google Scholar 

  129. Catalano OA, Gee MS, Nicolai E, et al. Evaluation of quantitative PET/MR enterography biomarkers for discrimination of inflammatory strictures from fibrotic strictures in Crohn disease. Radiology. 2016;278:792–800.

    Article  PubMed  Google Scholar 

  130. Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ. Crohn’s disease complicated by strictures: a systematic review. Gut. 2013;62:1072–84.

    Article  CAS  PubMed  Google Scholar 

  131. Lenze F, Wessling J, Bremer J, et al. Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis. 2012;18:2252–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Rao, N., Taylor, S.A. (2019). Functional Cross-Sectional Imaging Techniques in Crohn’s Disease. In: Rimola, J. (eds) Cross-Sectional Imaging in Crohn’s Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-96586-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96586-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96585-7

  • Online ISBN: 978-3-319-96586-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics