Skip to main content

A Smart Air-Conditioning Plant for Efficient Energy Buildings

  • Chapter
  • First Online:
The Internet of Things for Smart Urban Ecosystems

Part of the book series: Internet of Things ((ITTCC))

Abstract

The spread of renewable energy technologies in the building sector has produced the new figure of “prosumer”, able to consume and produce energy simultaneously. In this context, a correct management of the energy fluxes is required to increase user remuneration. All of this, paired with the use of the emergent IoT technologies, allowed the realization of a Smart Ecosystem devoted to make effective the process of producing, storing and consuming energy. Considering PV generators, the self-produced electricity surplus has to be transferred with advantageous conditions, alternatively it has to be stored. Air-conditioning plants employing heat pumps represent a useful option for the rational management of renewable electricity because the same system can be used as an alternative to “electric storage”, cheaper and more reliable than traditional batteries. Heat pumps can be exploited to produce thermal or cooling energy and store it in a suitable tank, though the building does not require them, and to conciliate the time shift between energy demand and offer. In presence of a saturated storage tank, the same building could be used as a further thermal accumulator by exploiting radiant emission systems to activate its thermal mass, by means of either overheating or undercooling strategies. The combination of these solutions allows for noticeable energy and economic savings and a rational use of renewable sources. However, a smart control system is required to make all the various involved devices communicating and coordinating among each other. A smart air conditioning system and the correspondent control strategies adopted for its management, based on the employment of PV driven heat pumps with thermal storage connected to a radiant emission system, is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ENEA, Italian agency on the energy efficiency, Analysis and results on the energy efficiency policy in Italy, Executive summary, 2017

    Google Scholar 

  2. A. Aswani, N. Master, J. Taneja, A. Krioukov, D. Culler, C. Tomlin, Energy-efficient building HVAC control using hybrid system LBMPC, in The Proceedings of 4th IFAC Conference, International Federation of Automatic Control, 2012

    Google Scholar 

  3. G. Nicoletti, N. Arcuri, R. Bruno, G. Nicoletti, A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manag. 89, 205–213 (2015)

    Google Scholar 

  4. G. Oliveti, N. Arcuri, R. Bruno, A. Mazzuca, Energy performances of an absorption chiller supplied by solar collectors in mediterranean area, in The Proceedings of the ISES Solar Word Congress 2005, Florida, USA, 2005

    Google Scholar 

  5. R.G. Morgan, Solar Assisted Heat Pumps. Sol. Energy 28(2), 129–135 (1982)

    Article  Google Scholar 

  6. K.J. Chua, S.K. Chou, W.M. Yang, Advances in heat pump systems: a review. Appl. Energy 87(12), 3611–3624 (2010)

    Article  Google Scholar 

  7. Castillo-Cagigal, E. Caamano-Martın, E. Matallanas, D. Masa-Bote, A. Gutierrez, F. Monasterio-Huelin, J. Jiménez-Leube, PV self-consumption optimization with storage and active DSM for the residential sector. Sol. Energy 85, 2338–2348 (2011)

    Google Scholar 

  8. H.J. Sauer, R.H. Howell, Heat Pump Systems (Wiley, New York, NY, 1983)

    Google Scholar 

  9. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

    Google Scholar 

  10. A. Dikici, A. Akbulut, Performance characteristics and energy–exergy analysis of solar-assisted heat pump system. Build. Environ. 43(11), 1961–1972 (2008)

    Article  Google Scholar 

  11. T.T. Chow, A review on PV/T solar technology. Appl. Energy 87(2), 365–379 (2010)

    Article  Google Scholar 

  12. J. Jie, L. Keliang, C. Tin-tai, P. Gang, H. Wie, H. Hanfeng, Performance analysis of a photovoltaic heat pump. Appl. Energy 85(8), 680–693 (2008)

    Article  Google Scholar 

  13. D. Feldman, G. Barbose, R. Margolis, R. Wiser, N. Darghouth, A. Goodrich, Photovoltaic (PV) pricing trends: historical, recent, and near-term projections, Lawrence Berkeley National Laboratory, 2014, https://escholarship.org/uc/item/06b4h95q

  14. G. Pei, J. Ji, K. Liu, H. He, A. Jiang, Numerical study of PV/T-SAHP system. J. Zhejiang Univ. 9(7), 970–980 (2008)

    Article  Google Scholar 

  15. I. Dincer, M. Rosen, TES: Systems and Applications (Wiley edition, New York, NY, 2002)

    Google Scholar 

  16. A. Arteconi, N.J. Hewitt, F. Polonara, Domestic demand-side management (DSM): role of heat pumps and TES systems. Appl. Therm. Eng. 51(1–2), 155–165 (2013)

    Article  Google Scholar 

  17. N. Arcuri, R. Bruno, S. Ruffolo, Radiant floor system supplied by solar collectors. Thermal and economic analysis, in The Proceedings of the 5th ISES Europe Solar Conference, Freiburg, Germany, vol. I, pp. 86–95, 2004

    Google Scholar 

  18. S.P. Corgnati, M. Perino, G.V. Fracastoro, P.V. Nielsen, Experimental and numerical analysis of air and radiant cooling systems in offices. Energy Build. 44, 801–806 (2009)

    Article  Google Scholar 

  19. N. Arcuri, R. Bruno, Energy performances of radiant ceiling heating system supplied by solar collectors, in The Proceedings of the Second Mediterranean Congress of Climatization—Climamed, Madrid, 2005

    Google Scholar 

  20. G. Oliveti, N. Arcuri, R. Bruno, Resa termica di soffitti radianti che impiegano tubi capillari per il riscaldamento e il raffrescamento degli ambienti, in The Proceedings of the 62° A.T.I. Conference, Cuzzolin Edition, Naples, pp. 119–123, 2007

    Google Scholar 

  21. N. Arcuri, R. Bruno, Prestazioni termiche di sistemi di raffrescamento a soffitto radiante e relative strategie di controllo, in The Proceedings of the 60° ATI Conference, Rome, 2005

    Google Scholar 

  22. R. Bruno, N. Arcuri, G. Pizzuti, The prediction of thermal loads in building by the EN ISO 13790 dynamic model: a comparison with TRNSYS. Energy Proc. 101, 192–199 (2016)

    Article  Google Scholar 

  23. R. Bruno, N. Arcuri, G. Pizzuti, A simplified hourly calculation code to evaluate the buildings heating load: a case study for Italian conditions. Simul. Series 48, 174–180 (2016)

    Google Scholar 

  24. ISO 13790, Thermal performance of buildings—calculation of energy use for space heating and cooling, International Organization for Standardization, Geneva, 2005

    Google Scholar 

  25. N. Arcuri, R. Bruno, P. Bevilacqua, Influence of the optical and geometrical properties of indoor environments for thermal performances of chilled ceilings. Energy Build. 88, 229–237 (2015)

    Article  Google Scholar 

  26. G. Belli, A. Giordano, C. Mastroianni, D. Menniti, A. Pinnarelli, L. Scarcello, N. Sorrentino, M. Stillo, A unified model for the optimal management of electrical and thermal equipment of a prosumer in a DR environment. IEEE Trans. Smart Grids, https://doi.org/10.1109/tsg.2017.2778021

  27. D. Menniti, N. Sorrentino, A. Pinnarelli, A. Burgio, G. Brusco, G. Belli, In the future smart cities: coordination of micro smart grids in a virtual energy District, in International Symposium Power on Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pp. 676–682, 2014, https://doi.org/10.1109/speedam.2014.6872123

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bruno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruno, R., Arcuri, N., Cuconati, G. (2019). A Smart Air-Conditioning Plant for Efficient Energy Buildings. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds) The Internet of Things for Smart Urban Ecosystems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-319-96550-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96550-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96549-9

  • Online ISBN: 978-3-319-96550-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics