Skip to main content

Projection and Uncertainties of Sea Level Trends in Baixada Santista

  • Chapter
  • First Online:
Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options

Abstract

The main factors that produce variations in sea level are: wind, through friction on the surface of the sea, in the form of surface waves and currents; atmospheric pressure; astronomical effects, associated with the relative positions of Earth, Sun and Moon. Other complementary factors also affect the sea level: eustasy, an effect dependent on the volume of water in the global ocean; steric effects, resulting from the variation of the volume of the water; halosteric effects, associated with salinity variations; isostasy, varying the average level of the sea due to changes in the position of the seabed and the topography of the coasts; local variations of the Earth’s gravity field.

The mean sea level in Santos has great variability, so that a large number of complete years should be considered for assessing the real sea level trend, because several long period periodicities are present in the records; the computed trends show great variations, and some decades have a definite decreasing trend of mean sea level; yet, earlier decades tend to have lower trends than recent ones, so the rise in mean sea level can be considered to accelerate over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablain, M., et al. (2009). A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Science, 5(2), 193–201.

    Article  Google Scholar 

  • Antonov, J. I., Levitus, S., & Boyer, T. P. (2002). Steric sea level variations during 1957–1994: Importance of salinity. Journal of Geophysical Research, 107(C12), 8013. https://doi.org/10.1029/2001JC000964.

    Article  Google Scholar 

  • AVISO. (2016). SSALTO/DUACS user handbook: MSLA and (M)ADT near-real time and delayed time products. CLS-DOS-NT-06-034 – Issue 5.0 – Date: 2016/08/20 – Nomenclature: SALP-MU-P-EA-21065-CLS.

    Google Scholar 

  • Box, G., Jenkins, G., & Reinsel, G. (1994). Time series analysis, 3rd edn. Prentice Hall.

    Google Scholar 

  • Carton, J. A., Giese, B. S., & Grodsky, S. A. (2005). Sea-level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research, 110, C09006. https://doi.org/10.1029/2004JC002817.

    Article  Google Scholar 

  • Cartwright, D. E., & Edden, A. C. (1973). Corrected tables of tidal harmonics. Geophysical Journal of the Royal Astronomical Society, 33, 253–264.

    Article  Google Scholar 

  • Cartwright, D. E., & Tayler, R. J. (1971). New computations of the tide-generating potential. Geophysical Journal of the Royal Astronomical Society, 23, 45–74.

    Article  Google Scholar 

  • Cazenave, A., & Remy, F. (2011). Sea level and climate: Measurements and causes of changes. Interdisciplinary Reviews: Climate Change, 2(5), 647–662. https://doi.org/10.1002/wcc.139.

    Article  Google Scholar 

  • Foreman, M. G. G. (1977). Manual for tidal heights analysis and predictions. Pacific Marine Science Report, 77–10, 97pp.

    Google Scholar 

  • Franco, A. S. (1997). Tides, fundamentals, analysis and prediction. São Paulo: IPT Press, 286pp.

    Google Scholar 

  • Franco, A. S., & Rock, N. J. (1972). The fast fourier transform and its application to tidal oscillations. Bol. do Instituto Oceanogr. de S.Paulo.

    Google Scholar 

  • Fu, L. L., et al. (1994). TOPEX/POSEIDON mission overview. Journal of Geophysical Research: Oceans, 99(C12), 24369–24381.

    Article  Google Scholar 

  • Godin, G. (1972). The analysis of tides. Toronto: University of Toronto Press, 264pp.

    Google Scholar 

  • Harari, J., & Camargo, R. (1995). Tides and mean sea level variabilities in Santos (SP), 1944 to 1989. Relatório Interno do Instituto Oceanográfico da USP, n° 36, 15 p.

    Google Scholar 

  • IOC (2015). Manual on sea level measurement and interpretation. Manuals and Guides 14. Intergovernmental Oceanographic Commission. Volumes I–V. http://www.psmsl.org/train_and_info/training/manuals/.

  • IPCC. (2007). In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Llovel, W., Guinehut, S., & Cazenave, A. (2010). Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and Grace ocean mass. Ocean Dynamics, 60, 1193–1204. https://doi.org/10.1007/s10236-010-0324-0.

    Article  Google Scholar 

  • Pascual, A., Faugère, Y., Larnicol. G., & Le Traon, P.Y. (2006). Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33(2).

    Google Scholar 

  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth (1978–2012), 117(B4) April 2012.

    Article  Google Scholar 

  • Schaeffer, P., Faugere, Y., Legeais, J.F., Ollivier, A., Guinle, T., & Picot, N. (2012). The CNES CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geodesy, 35, 2012, Special Issue, Jason-2.

    Article  Google Scholar 

  • Souza, R. B. (2009). Oceanografia por satélites, Ed. Oficina de Textos, 2ª ed., 382 p., ISBN: 9788586238741.

    Google Scholar 

  • Stewart, R. H. (2005). Introduction to physical oceanography. Department of Oceanography, Texas A and M University. 344 pp. Available at http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html.

  • Tomczak, M., & Godfrey, J. S. (1994). Regional oceanography: an introduction. London: Pergamon Press. 391 pp. (available at http://www.es.flinders.edu.au/~mattom/regoc/pdfversion.html).

    Google Scholar 

  • Tran, N., Labroue, S., Philipps, S., Bronner, E., & Picot, N. (2010). Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Marine Geodesy, 33(S1), 348–362.

    Article  Google Scholar 

  • Wolter, K., & Timlin, M. S. (2011). El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology, 31, 1074–1087.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Harari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harari, J., de Camargo, R., Souza, C.R.d.G., Nunes, L.H. (2019). Projection and Uncertainties of Sea Level Trends in Baixada Santista. In: Nunes, L., Greco, R., Marengo, J. (eds) Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options. Springer, Cham. https://doi.org/10.1007/978-3-319-96535-2_5

Download citation

Publish with us

Policies and ethics