Skip to main content

Projections of Climate Change in the Coastal Area of Santos

  • Chapter
  • First Online:
Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options

Abstract

The objective of this work is to assess the projections of climate change in the city of Santos. The assessment is based on the downscaling of two global climate model simulations using the Eta Regional Climate Model at 20-km and 5-km resolutions, under RCP4.5 and RCP8.5 scenarios for the period between 1961 and 2100. The higher horizontal resolution simulations reproduce in more detail the surface characteristics, such as the topography, vegetation cover, and coastline, and capture the extreme climate events. Evaluation of the model simulations of the present climate show reasonable agreement with observed climatology. Frequency distributions of precipitation and temperature values show that the 5-km run approaches the observed precipitation better than the 20-km resolution run. The assessment of climate change projections indicates that warming in the region reaches about 2 °C until the end of the twenty-first century, and that precipitation reduces in the entire region. Trends of climatic extreme indices show increase of hot days, warm nights, and in the length of consecutive dry days with the increase of the atmospheric greenhouse gas concentrations. Projections of the minimum surface pressure off the coast of Southeast Brazil show weakening tendency under RCP8.5 scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109. https://doi.org/10.1029/2005JD006290.

    Article  Google Scholar 

  • Barbosa, J. P. M. (2008). Avaliação de técnicas empíricas e estatísticas de identificação de extremos de precipitação para o litoral paulista e entorno. MSc dissertation. Universidade Estadual de Campinas, Campinas.

    Google Scholar 

  • Cavalcanti, I. F. A., Nunes, L. H., Marengo, J. A., Gomes, J. L., Silveira, V. P., & Castellano, M. S. (2017). Projections of precipitation changes in two vulnerable regions of São Paulo State, Brazil. American Journal of Climate Change, 6, 268–293. https://doi.org/10.4236/ajcc.2017.62014.

    Article  Google Scholar 

  • Chou, S. C., Marengo, J. A., Lyra, A. A., Sueiro, G., Pesquero, J. F., Alves, L. M., Kay, G., Betts, R., Chagas, D. J., Gomes, J. L., & Bustamante, J. F. (2012). Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dynamics, 38, 635–653. https://doi.org/10.1007/s00382-011-1002-8.

    Article  Google Scholar 

  • Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., & Marengo, J. (2014a). Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios. American Journal of Climate Change, 3, 512–527. https://doi.org/10.4236/ajcc.2014.35043.

    Article  Google Scholar 

  • Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P., & Marengo, J. (2014b). Evaluation of the Eta simulations nested in three global climate models. American Journal of Climate Change, 3, 438–454. https://doi.org/10.4236/ajcc.2014.35039.

    Article  Google Scholar 

  • Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2013). Evaluation of climate models. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 741–866). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.020. ISBN: 978-1-107-66182-0.

    Chapter  Google Scholar 

  • Gulizia, C., & Camilloni, I. (2015). Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583–595.

    Article  Google Scholar 

  • IPCC. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (Eds.), Cambridge: Cambridge University Press, 1535 pp.

    Google Scholar 

  • Lyra, A., Tavares, P., Chou, S. C., Sueiro, G., Dereczynski, C. P., Sondermann, M., Silva, A., Marengo, J., & Giarolla, A. (2017). Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2067-z.

    Article  Google Scholar 

  • Marengo, J. A., Chou, S. C., Kay, G., Alves, L. M., Pesquero, J. F., Soares, W. R., Santos, D. C., Lyra, A. A., Sueiro, G., Betts, R., Chagas, D. J., Gomes, J. L., Bustamante, J. F., & Tavares, P. (2012). Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, São Francisco, and the Paraná River Basins. Climate Dynamics, 38(9–10), 1829–1848.

    Article  Google Scholar 

  • Marengo, J. A., Scarano, F. R., Klein, A. F., Souza, C. R. G., & Chou, S. C. (2017). Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas. In J. A. Marengo & F. R. Scarano (Eds.), Painel Brasileiro de Mudanças Climáticas. Rio de Janeiro: PBMC, COPPE – UFRJ. 184 p. ISBN: 978-85-285-0345-6.

    Google Scholar 

  • Mesinger, F., Chou, S. C., Gomes, J. L., Jovic, D., Bastos, P., Bustamante, J. F., Lazic, L., Lyra, A. A., Morelli, S., Ristic, I., & Veljovic, K. (2012). An upgraded version of the Eta model. Meteorology and Atmospheric Physics, 116(3), 63–79. https://doi.org/10.1007/s00703-012-0182-z.

    Article  Google Scholar 

  • PBMC. (2016). Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: Relatório Especial do Painel Brasileiro de Mudanças Climáticas. In: J. A. Marengo & F. R. Scarano (Eds.). PBMC, COPPE – UFRJ. Rio de Janeiro. 184 p. ISBN: 978-85-285-0345-6.

    Google Scholar 

  • Pesquero, J. F., Chou, S. C., Nobre, C. A., & Marengo, J. A. (2010). Climate downscaling over South America for 1961–1970 using the Eta model. Theoretical and Applied Climatology, 99(1–2), 75–93.

    Article  Google Scholar 

  • Reboita, M. S., da Rocha, R. P., Ambrizzi, T., & Sugahara, S. (2010). South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 35, 1331–1347. https://doi.org/10.1007/s00382-009-0668-7.

    Article  Google Scholar 

  • van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31.

    Article  Google Scholar 

  • Yin, L., Fu, R., Shevliakova, E., & Dickinson, R. E. (2013). How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dynamics, 41(11–12), 3127–3143.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by CNPq 308035/2013-5, CNPq 306757/2017-6, FAPESP 2012/51876-0, FAPESP 2014/21048-4, FAPESP 2014/00192-0, and FAPESP 2017/06627-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sin-Chan Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chou, SC. et al. (2019). Projections of Climate Change in the Coastal Area of Santos. In: Nunes, L., Greco, R., Marengo, J. (eds) Climate Change in Santos Brazil: Projections, Impacts and Adaptation Options. Springer, Cham. https://doi.org/10.1007/978-3-319-96535-2_4

Download citation

Publish with us

Policies and ethics