Skip to main content

Contamination Links Between Terrestrial and Aquatic Ecosystems: The Neonicotinoid Case

  • Chapter
  • First Online:
  • 498 Accesses

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Current rates of economic development are interrelated with an increase in environmental pollution. Among different contamination agents, modern insecticides such as neonicotinoids (NNIs) require precise attention in evaluation of losses and benefits. NNIs is relatively new class of systemic insecticides, being in use for about 20 years and embracing around 25% of global pesticide market. Currently there are several methods to apply NNIs to plants such as foliar sprays, soil drenches and seed treatments, and in recent years there has been a global shift towards seed treatment (seed dressing) rather than aerial spraying. The discovery of NNIs was considered as a milestone in the research on insecticides. Possessing chemical structure similar to nicotine and acting as agonists at insects’ acetylcholine receptors, NNIs demonstrate selective toxicity to invertebrates versus vertebrates. In addition, toxicity of NNIs in mammals is between one to three orders of magnitude lower than the toxicity caused by their predecessors: organophosphates, carbamates and pyrethroids. However, NNIs are mobile contaminants that can be transferred from plants to soils and water and induce diverse array of toxic effects in non-target organisms, even affecting animals not in contact with them directly. Surface- and groundwater may also act as vector for the transport of NNIs to untreated locations. The presence of NNIs in water bodies might facilitate their uptake by non-target plants present in littoral and riparian zones, with the potential threat to herbivorous insects. Leaching of NNIs to groundwater may imply their further distribution to other matrices, potentially leading to undesirable environmental issues. Pollinators and aquatic insects appear to be especially susceptible to these insecticides and chronic sublethal effects tend to be more prevalent than acute toxicity. Although a complete knowledge of the fate of NNIs in the environments is missing, authorities are starting to react to the threat they pose by limiting their use and application. Relevant improvements have been made in the field of the toxicity to non-target organisms. Studies that include factors such as mixture toxicity, field or semi-field exposures can make significant contribution to the further evaluating of costs-benefits of neonicotinoids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addy-Orduna LM, Brodeur JC, Mateo R (2019) Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves: a contribution for the risk assessment of neonicotinoids in birds. Sci Total Environ 650:1216–1223

    Article  CAS  Google Scholar 

  • Alford A, Krupke CH (2017) Translocation of the neonicotinoid seed treatment clothianidin in maize. PLoS ONE 12(3):e0173836

    Article  Google Scholar 

  • Baxter, CV Fausch, KD Saunders, WC (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biol 50 (2):201–220

    Article  Google Scholar 

  • Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27(2):461–470

    Article  CAS  Google Scholar 

  • Beketov MA, Schafer RB, Marwitz A, Paschke A, Liess M (2008) Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: effect concentrations and recovery dynamics. Sci Total Environ 405(1–3):96–108

    Article  CAS  Google Scholar 

  • Bishop CA, Moran AJ, Toshack MC, Elle E, Maisonneuve F, Elliott JE (2018) Hummingbirds and bumble bees exposed to neonicotinoid and organophosphate insecticides in the Fraser Valley, British Columbia. Canada Environ Toxicol Chem 37(8):2143–2152

    Article  CAS  Google Scholar 

  • Bonmatin J-M, Giorio V, Girolami D, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EAD, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure: neonicotinoids and fipronil 22 (1): 35-67

    Google Scholar 

  • Botías C,  David A, Hill EM, Goulson D (2016) Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566:269–278

    Article  Google Scholar 

  • Brown M et al (2016) A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ 4:e2249

    Article  Google Scholar 

  • Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science: 1187512

    Google Scholar 

  • BVL, Federal Office of Consumer Protection and Food Safety, 2008 Background information: bee losses caused by insecticidal seed treatment in Germany in 2008. https://www.bvl.bund.de/EN/08_PresseInfothek_engl/01_Presse_und_Hintergrundinformationen/2008_07_15_hi_Bienensterben_en.html Last accessed 30.10.2018

  • Bradford BZ, Huseth AS, Groves RL (2018) Widespread detections of neonicotinoid contaminants in central Wisconsin groundwater. PLoS ONE 13(10):e0201753

    Article  Google Scholar 

  • Byholm P, Mäkeläinen S, Santangeli A, Goulson D (2018) First evidence of neonicotinoid residues in a long-distance migratory raptor, the European honey buzzard (Pernis apivorus). Sci Total Environ 639:929–933

    Article  CAS  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumblebees. PNAS 108(2):662–667

    Article  CAS  Google Scholar 

  • Canadian Council of Ministers of the Environment. 2007 Canadian water quality guidelines for the protection of aquatic life: imidacloprid. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Cavallaro MC, Liber K, Headley JV, Peru KM, Morrissey CA (2018) Community-level and phenological responses of emerging aquatic insects exposed to 3 neonicotinoid insecticides: an in situ wetland limnocorral approach. Environ Toxicol Chem 37(9):2401–2412

    Article  CAS  Google Scholar 

  • Delfino Vieira CE, Perez MR, Acayaba RD, Montagner Raimundo CC, dos Reis Martinez CB (2018) DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195:125–134

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2012) Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA J 10(6):2752

    Google Scholar 

  • European Food Safety Authority (EFSA) (2013a) Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin. EFSA J 11(1):3066

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2013b) Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam. EFSA J 11(1):3067

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2013c) Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid. EFSA J 11(1):3068

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2018a) Evaluation of the emergency authorisations granted by Member State Finland for plant protection products containing clothianidin or thiamethoxam. EFSA supporting publication 2018: EN-1419, 13 pp. https://doi.org/10.2903/sp.efsa.2018.en-1419

  • European Food Safety Authority (EFSA) (2018b) Evaluation of the emergency authorisations granted by Member State Romania for plant protection products containing clothianidin, imidacloprid or thiamethoxam. EFSA supporting publication 2018: EN-1416, 16 pp. https://doi.org/10.2903/sp.efsa.2018.en-1416

  • EFSA Panel on Plant Protection Products and their Residues (PPR) (2012) Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J 10 (5):2668

    Google Scholar 

  • Eng ML, Stutchbury BJM, Morrissey CA (2017) Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci Rep 7(1):15176

    Article  Google Scholar 

  • European Commission, Directorate General Joint Research Centre. Institute for Environment and Sustainability/H01-Water Resources Unit (2015) Development of the first watch list under the environmental quality standards directive. Publications Office of the European Union, Luxembourg, 166 pp. https://doi.org/10.2788/101376

  • Gallai N, Salles JM, Settele J et al (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econom 68:810–821

    Article  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22(1):103–118

    Article  CAS  Google Scholar 

  • Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, Giorio C, Marton D, Taparro A (2012) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J Appl Entomol 136:17–26

    Article  CAS  Google Scholar 

  • Godfray HCJ, Blacquiere T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2014) A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc Royal Soc B 281:20140558

    Article  Google Scholar 

  • Goulson D (2013) Review: an overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987

    Article  Google Scholar 

  • Grossman GM, Kruger AB (1995) Economic growth and the environment. Q J Econ 110 (2,1):353–377

    Article  Google Scholar 

  • Hallmann CA, Foppen RPB, Turnhout CAM, van Kroon HD, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:7509

    Article  Google Scholar 

  • Hladik ML, Kolpin DW, Kuivila KM (2014) Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut 193:189–196

    Article  CAS  Google Scholar 

  • Hladik ML, Main AR, Goulson D (2018) Environmental risks and challenges associated with neonicotinoid insecticides. Environ Sci Technol 52(6):3329–3335

    Article  CAS  Google Scholar 

  • Hong X, Zhao X, Tian X, Li J, Zha J (2018) Changes of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus). Environ Pollut 233:862–871

    Article  CAS  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  Google Scholar 

  • Huseth AS, Groves RL (2014) Environmental fate of soil applied neonicotinoid insecticides in an irrigated potato agroecosystem. PLoS ONE 9(5):e97081

    Article  Google Scholar 

  • Iturburu FG, Zoemisch M, Panzeri AM, Crupkin AC, Contardo-Jara V, Pflugmacher S, Menone ML (2017) Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ Toxicol Chem 36(3):699–708

    Article  CAS  Google Scholar 

  • Iyaniwura TT (1991) Non-target and environmental hazards of pesticides. Rev Environ Health 9(3):161–176

    Article  CAS  Google Scholar 

  • Jeschke P, Nauen R (2008) Neonicotinoids—from ziro to hero in insecticide chemistry. Pest Manage Sci 64(11):1084–1098

    Article  CAS  Google Scholar 

  • Kunce W, Josefsson S, Örberg J, Johansson F (2015) Combination effects of pyrethroids and neonicotinoids on development and survival of Chironomus riparius. Ecotoxicol Environ Saf 122:426–431

    Article  CAS  Google Scholar 

  • Lee-Jenkins SSY, Robinson SA (2018) Effects of neonicotinoids on putative escape behavior of juvenile wood frogs (Lithobates sylvaticus) chronically exposed as tadpoles. Environ Toxicol Chem 9999:1–9

    Google Scholar 

  • Lever JJ, van Nes EH, Scheffer M, Boscompte J (2014) The sudden collapse of the pollinator communities. Ecol Lett 17:350–359

    Article  Google Scholar 

  • Likens GE, Bormann FH (1974) Linkages between terrestrial and aquatic ecosystems. BioScience 24(8):447–456

    Article  Google Scholar 

  • Main AR, Michel NL, Cavallaro MC, Headley JV, Peru KM, Morrissey CA (2016) Snowmelt transport of neonicotinoid insecticides to Canadian Prairie wetlands. Agric Ecosyst Environ 215:76–84

    Article  CAS  Google Scholar 

  • Malev O, Klobučar RS, Fabbretti E, Trebše P (2012) Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: microalgae desmodesmus subspicatus and amphipod gammarus fossarum. Pestic Biochem Physiol 104(3):178–186

    Article  CAS  Google Scholar 

  • Maloney EM, Morrissey CA, Headley JV, Peru KM, Liber K (2018) Can chronic exposure to imidacloprid, clothianidin, and thiamethoxam mixtures exert greater than additive toxicity in Chironomus dilutus? Ecotoxicol Environ Saf 156:354–365

    Article  CAS  Google Scholar 

  • Maloney EM, Morrissey CA, Headley JV, Peru KM, Liber K (2017) Cumulative toxicity of neonicotinoid insecticide mixtures to Chironomus dilutus under acute exposure scenarios. Environ Toxicol Chem 36(11):3091–3101

    Article  CAS  Google Scholar 

  • Matsuda K, Buchingham SD, Kleier D, Rauh JJ, Grauso M, Satelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22(11):573–580

    Article  CAS  Google Scholar 

  • Mohr S, Berghahn R, Schmiediche R, Hübner V, Loth S, Feibicke M, Mailahn W, Wogram J (2012) Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquat Toxicol 110–111:25–36

    Article  Google Scholar 

  • Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303

    Article  CAS  Google Scholar 

  • Noriega JA, Hortal J, Azcarate FM et al (2018) Research trends in ecosystem services provided by insects. Basic Appl Ecol 26:8–23

    Article  Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986

    Article  CAS  Google Scholar 

  • Pickford DB, Finnegan MC, Baxter LR, Bohmer W, Hanson ML, Stegger P, Hommen U, Hoekstra PF, Hamer M (2018) Response of the mayfly (Cloeon dipterum) to chronic exposure to thiamethoxam in outdoor mesocosms. Environ Toxicol Chem 37(4):1040–1050

    Article  CAS  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP et al (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int 22:68–102

    Article  CAS  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  Google Scholar 

  • Raby M, Nowierski M, Perlov D, Zhao X, Hao C, Poirier DG, Sibley PK (2018a) Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environ Toxicol Chem 37(5):1430–1445

    Article  CAS  Google Scholar 

  • Raby M, Zhao X, Hao C, Poirier DG, Sibley PK (2018b) Chronic toxicity of 6 neonicotinoid insecticides to Chironomus dilutus and Neocloeon triangulifer. Environ Toxicol Chem 37(10):2727–2739

    Article  CAS  Google Scholar 

  • Rico A, Arenas-Sanchez A, Pasqualini J, Garcia-Astillero A, Cherta L, Nozal L, Vighi M (2018) Effects of imidacloprid and a neonicotinoid mixture on aquatic invertebrate communities under Mediterranean conditions. Aquat Toxicol 204:130–143

    Article  CAS  Google Scholar 

  • RIVM (2014) Water quality standards for imidacloprid: proposal for an update according to the water framework directive. In: Smit CE (ed) National institute for public health and the environment. Bilthoven, Netherlands

    Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW et al (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22 (1):5–34

    Article  Google Scholar 

  • Sur R, Stork A (2003) Uptake, translocation and metabolism of imidacloprid in plants. Bullet Insectol 56(1):35–40

    Google Scholar 

  • Taliansky-Chamudis A, Gómez-Ramírez P, León-Ortega M, García-Fernández AJ (2017) Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Sci Total Environ 595:93–100

    Article  CAS  Google Scholar 

  • Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC (2014) Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS ONE 9(7):e102725

    Article  Google Scholar 

  • Tomizawa M, Casida JE (2011) Neonicotinoid insecticides: highlights of a symposium on strategic molecular designs. J Agric Food Chem 59(7):2883–2886

    Article  CAS  Google Scholar 

  • Turaga U, Peper ST, Dunham NR, Kumar N, Kistler W, Almas S, Presley SM, Kendall RJ (2016) A survey of neonicotinoid use and potential exposure to northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains of Texas and Oklahoma. Environ Toxicol Chem 35(6):1511–1515

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1992) Memorandum NTN 33893 Data Submissions for pending registration, DP Barcode #D182987. USEPA Archive Document

    Google Scholar 

  • Velisek J, Stara A (2018) Effect of thiacloprid on early life stages of common carp (Cyprinus carpio). Chemosphere 194:481–487

    Article  CAS  Google Scholar 

  • Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res Int 24(21):17285–17325

    Article  CAS  Google Scholar 

  • Yu SJ (2015) Classification of insecticides. The toxicology and biochemistry of insects, 2nd edn. CRC Press, Boca Raton, Florida, USA, pp 31–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Carrasco-Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrasco-Navarro, V., Skaldina, O. (2019). Contamination Links Between Terrestrial and Aquatic Ecosystems: The Neonicotinoid Case. In: Kesari, K. (eds) Networking of Mutagens in Environmental Toxicology. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-96511-6_8

Download citation

Publish with us

Policies and ethics