Skip to main content

System Network Biology Approaches in Exploring of Mechanism Behind Mutagenesis

  • Chapter
  • First Online:
Networking of Mutagens in Environmental Toxicology

Abstract

Mutagenesis is the alteration of the genetic material by the help of mutagens. Mutations that are capable of inducing any diseases have a large impact on the biological systems. Whenever mutation occurs, it not only affects any particular gene or protein, but also affects the whole system related to that gene. Changes in one system will further bring out changes in the adjacent systems, which works in coordination with the mutated system. Thus, a single mutation can have an impact on more than one system. System network biology helps in providing a new perspective of inspection of these biological systems in the form of networks with the help of mathematical representations. In this chapter, we deal with different properties of the networks that help in analyzing the network-graph and finding the most probable network that best describes the process. Here we tried to investigate the candidate protein molecule that may act as a target protein with the help of network analysis. For this, we used various datasets and software that would be used in the reconstruction of different biological networks and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barabási LS, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  • Borgatti SP (2005) Centrality and network flow. Soc Netw 27:55–71

    Article  Google Scholar 

  • Borgattia SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484

    Article  Google Scholar 

  • Bosley AD, Das S, Andresson T (2013) A role for protein–protein interaction networks in the identification and characterization of potential biomarkers (Chap. 21). In: Proteomic and metabolomic approaches to biomarker discovery, pp 333–347

    Chapter  Google Scholar 

  • Brandes U (2008) On variants of shortest-path betweenness centrality and their generic computation. Soc Netw 2:136–145

    Article  Google Scholar 

  • Buisson B, Bertrand D (2002) Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci 23(3):130–136

    Article  CAS  Google Scholar 

  • Bullmore DE, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  Google Scholar 

  • Chang X, Xu T, Li Y, Wang K (2013) Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of ‘date’ and ‘party’ hubs. Sci Rep 3:1691

    Article  Google Scholar 

  • Dietz KJ, Jacquot JP, Harris G (2010) Hubs and bottlenecks in plant molecular signalling networks. New Phytol 188(4):919–936

    Article  CAS  Google Scholar 

  • Frank O (2010) Transitivity in stochastic graphs and digraphs. J Math Soc 7(2):199–213

    Article  Google Scholar 

  • Frenz CM (2005) Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions. Proteins Struct Funct Bioinform 59(2):147–151

    Article  CAS  Google Scholar 

  • Gao W, Wu H, Siddiqui MK, Baig AQ (2017) Study of biological networks using graph theory 1–8 (in press). https://doi.org/10.1016/j.sjbs.2017.11.022

    Article  Google Scholar 

  • Gavin AC et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  Google Scholar 

  • Goel A, Wilkins MR (2012) Dynamic hubs show competitive and static hubs non-competitive regulation of their interaction partners. PLoS ONE 7(10):e48209

    Article  CAS  Google Scholar 

  • He X, Zhang J (2006) Why do hubs tend to be essential in protein networks? PLoS Genet 2(6):e88

    Article  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3(10):733–744

    Article  CAS  Google Scholar 

  • Howard DJ, Briggs LA, Pritsos CA (1998) Oxidative DNA damage in mouse heart, liver, and lung tissue due to acute side-stream tobacco smoke exposure. Arch Biochem Biophys 352(2):293–297

    Article  CAS  Google Scholar 

  • Kalna G, Higham DJ (2007) A clustering coefficient for weighted networks, with application to gene expression data. AI Commun—Netw Anal Nat Sci Eng 20(4):263–271

    Google Scholar 

  • Kang U, Papadimitriou S, Sun J, Tong H (2011) Centralities in large networks: algorithms and observations. In: Proceedings of the 2011 SIAM international conference on data mining, pp 119–130

    Google Scholar 

  • Krot A, Prokhorenkova LO (2015) Local clustering coefficient in generalized preferential attachment models. In: Gleich DF, Komjathy J (eds) Algorithms and models for the web graph. Springer International Publishing Switzerland, pp 15–28. https://doi.org/10.1007/978-3-319-26784-5_2

    Google Scholar 

  • Lim E, Pon A, Djoumbou Y, Knox Craig, Shrivastava S, Guo AC, Neveu V, Wishart DS (2010) T3DB: a comprehensively annotated database of common toxins and their targets. Nucl Acids Res 38:D781–D786

    Article  CAS  Google Scholar 

  • Lu Z (2011) PubMed and beyond: a survey of web tools for searching biomedical literature. Database 2011(1):baq036

    Article  Google Scholar 

  • Lv YW, Jing Wang J, Sun L, Zhang JM, Cao L, Ding YY, Chen Y, Dou JJ, Huang J, Tang YF, Wu WT, Cui WR, Lv HT (2013) Understanding the pathogenesis of kawasaki disease by network and pathway analysis. Comput Math Methods Med 2013:1–17

    Article  Google Scholar 

  • Morlan J, Baker J, Sinicropi D (2009) Mutation detection by RT-PCR: a simple, robust and highly selective method. PLoS ONE 4(2):e4584

    Article  Google Scholar 

  • Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Netw 31(2):155–163

    Article  Google Scholar 

  • Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21(48):7435–7451

    Article  CAS  Google Scholar 

  • Prokhorenkova LO, Samosvat E (2014) Global clustering coefficient in scale-free networks, pp 1–2. https://doi.org/10.1007/978-3-319-13123-8_5

    Google Scholar 

  • Pržulj N, Wigle DA, Jurisica I (2004) Functional topology in a network of protein interactions. Bioinformatics 20(3):340–348

    Article  Google Scholar 

  • Ran J, Li H, Fu J, Liu L, Xing Y, Li X, Shen H, Chen Y, Jiang X, Li Y, Li H (2013) Construction and analysis of the protein-protein interaction network related to essential hypertension. BMC Syst Biol 7:32

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–12128

    Article  CAS  Google Scholar 

  • Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(3):1–19

    Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl Acids Res 43:D447–D452

    Article  CAS  Google Scholar 

  • Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A (2009) Identifying hubs in protein interaction networks. PLoS ONE 4(4):e5344

    Article  Google Scholar 

  • Vandereyken K, Leene JV, Coninck BD, Cammue BPA (2018) Hub protein controversy: taking a closer look at plant stress response hubs. Front Plant Sci 9:694

    Article  Google Scholar 

  • Villaverde AF, Ross J, Banga JR (2013) Reverse engineering cellular networks with information theoretic methods. Cells 2(2):306–329

    Article  Google Scholar 

  • Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y, Knox C, Wilson M, Liang Y, Liu JGY, Goldansaz SA, Rappaport SM (2015) T3DB: the toxic exposome database. Nucl Acids Res 43(D1):D928–D934

    Article  CAS  Google Scholar 

  • Wu Q (2013) The maximum clique problems with applications to graph coloring. Artificial Intelligence [cs.AI]. Université d’Angers. English

    Google Scholar 

  • Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3(4):e59

    Article  Google Scholar 

  • Zhu CQ, Lam TH, Jiang CQ, Wei BX, Lou X, Liu WW, Lao XQ, Chen YH (1999) Lymphocyte DNA damage in cigarette factory workers measured by the Comet assay. Mutat Res/Genet Toxicol Environ Mutagen 444(1):1–6

    Article  CAS  Google Scholar 

  • Zotenko E, Mestre J, O’Leary DP, Przytycka TM (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 4(8):e1000140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Dhasmana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anukriti et al. (2019). System Network Biology Approaches in Exploring of Mechanism Behind Mutagenesis. In: Kesari, K. (eds) Networking of Mutagens in Environmental Toxicology. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-96511-6_6

Download citation

Publish with us

Policies and ethics