Skip to main content

Management of Cardiopulmonary Bypass-Associated Coagulopathy

  • Chapter
  • First Online:
Pediatric Critical Care

Abstract

Coagulopathy in pediatric patients after cardiopulmonary bypass (CPB) is highly complex and multifactorial. Pediatric patients are at risk for post-CPB coagulopathy due to hemodilution resulting from the CPB circuit, use of varying degrees of hypothermia during surgical procedures, prolonged duration of highly complex surgical repairs, and abnormalities of the immature and cyanotic hematologic system. Hemostasis can be optimized at various stages from the preoperative to postoperative phases. Strategies include intraoperative antifibrinolytic therapy, CPB circuit properties and management, and post-CPB procoagulant therapy. Point-of-care whole-blood assays can be used to more directly guide correction of coagulopathy, utilizing both allogeneic blood products and biosynthetic coagulation factors such as fibrinogen concentrate and prothrombin protein concentrates. This chapter will focus on current controversies surrounding CPB-associated coagulopathy and its management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macfarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biological amplifier. Nature. 1964;202:498–9.

    Article  CAS  PubMed  Google Scholar 

  2. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145:1310–2.

    Article  CAS  PubMed  Google Scholar 

  3. Hoffman M, Monroe DM 3rd. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.

    Article  CAS  PubMed  Google Scholar 

  4. Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis. Hematol Oncol Clin N Am. 2007;21:1–11.

    Article  Google Scholar 

  5. Smith SA. The cell-based model of coagulation. J Vet Emerg Crit Care. 2009;19:3–10.

    Article  Google Scholar 

  6. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haemotol. 2005;129:307–21.

    Article  CAS  Google Scholar 

  7. Chapin JC, KA. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015;29:17–24.

    Article  CAS  PubMed  Google Scholar 

  8. Yeh T Jr, Kavarana MN. Cardiopulmonary bypass and the coagulation system. Prog Pediatr Cardiol. 2005;21:87–115.

    Article  Google Scholar 

  9. Sniecinksi RM, Chandler WL. Activation of the hemostatic system during cardiopulmonary bypass. Anesth Analg. 2011;113(6):1319–33.

    Article  Google Scholar 

  10. Chandler WL, Velan T. Secretion of tissue plasminogen activator and plasminogen activator inhibitor 1 during cardiopulmonary bypass. Thromb Res. 2003;112:185–92.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao X, et al. Blood interactions with plasticized poly (vinyl chloride): influence of surface modification. J Mater Sci Mater Med. 2008;19(2):713–9.

    Article  CAS  PubMed  Google Scholar 

  12. van den Goor JM, et al. Adhesion of thrombotic components to the surface of a clinically used oxygenator is not affected by Trillium coating. Perfusion. 2006;21(3):165–72.

    Article  PubMed  Google Scholar 

  13. Nishida H, et al. Comparative study of biocompatibility between the open circuit and closed circuit in cardiopulmonary bypass. Artif Organs. 1999;23(6):547–51.

    Article  CAS  PubMed  Google Scholar 

  14. Chandler WL, Velan T. Plasmin generation and D-dimer formation during cardiopulmonary bypass. Blood Coagul Fibrinolysis. 2004;15(7):583–91.

    CAS  PubMed  Google Scholar 

  15. de Haan J, van Oeveren W. Platelets and soluble fibrin promote plasminogen activation causing downregulation of platelet glycoprotein Ib/IX complexes: protection by aprotinin. Thromb Res. 1998;92:171–9.

    Article  PubMed  Google Scholar 

  16. Michelson AD, Barnard MR. Plasmin-induced redistribution of platelet glycoprotein Ib. Blood. 1990;76:2005–10.

    CAS  PubMed  Google Scholar 

  17. Rinder CS, et al. Platelet activation and aggregation during cardiopulmonary bypass. Anesthesiology. 1991;75(3):388–93.

    Article  CAS  PubMed  Google Scholar 

  18. Slaughter TF, et al. Reversible shear-mediated platelet dysfunction during cardiac surgery as assessed by the PFA-100 platelet function analyzer. Blood Coagul Fibrinolysis. 2001;12(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  19. Velik-Salchner C, et al. An assessment of cardiopulmonary bypass-induced changes in platelet function using whole blood and classical light transmission aggregometry: the results of a pilot study. Anesth Analg. 2009;108(6):1747–54.

    Article  PubMed  Google Scholar 

  20. Day JRS, et al. Clinical inhibition of the seven-transmembrane thrombin receptor (PAR1) by intravenous aprotinin during cardiothoracic surgery. Circulation. 2004;110:2597–600.

    Article  CAS  PubMed  Google Scholar 

  21. Marx G, Pokar H, Reuter H, Doering V, Tilsner V. The effects of aprotinin on hemostatic function during cardiac surgery. J Cardiothorac Vasc Anesth. 1991;5:467–74.

    Article  CAS  PubMed  Google Scholar 

  22. Fuhrer G, Gallimore MI, Heller W, Hoffmeister HE. Aprotinin in cardiopulmonary bypass—effects on the Hageman factor (FXII)-Kallikrein system and blood loss. Blood Coagul Fibrinolys. 1992;3:99–104.

    Article  CAS  Google Scholar 

  23. Segal H, et al. Complement activation during major surgery: the effect of extracorporeal circuits and high-dose aprotinin. J Cardiothorac Vasc Anesth. 1998;12:542–7.

    Article  CAS  PubMed  Google Scholar 

  24. Longstaff C. Studies on the mechanisms of action of aprotinin and tranexamic acid as plasmin inhibitors and antifibrinolytic agents. Blood Coagul Fibrinolysis. 1994;5:537–42.

    CAS  PubMed  Google Scholar 

  25. Munoz JJ, Birkmeyer NJ, Birkmeyer JD, O’Connor GT, Dacey LJ. Is epsilon-aminocaproic acid as effective as aprotinin in reducing bleeding with cardiac surgery. Circulation. 1999;99:81–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fremes SE, Wong BI, Lee E, Mai R, Christakis GT, McLean RF, Goldman BS, Naylor CD. Metaanalysis of prophylactic drug treatment in the prevention of postoperative bleeding. Ann Thorac Surg. 1994;58(6):1580–8.

    Article  CAS  PubMed  Google Scholar 

  27. Laupacis A, Fergusson D. Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood transfusion as the outcome. The International Study of Perio-operative Transfusion (ISPOT) investigators. Anesth Analg. 1997;85(6):1258–67.

    Article  CAS  PubMed  Google Scholar 

  28. Sedrakyan A, Treasure T, Elefteriades JA. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery; a systematic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg. 2004;128:442–8.

    Article  CAS  PubMed  Google Scholar 

  29. Cochrane Database. Syst Rev. 2007;4 CD001886, CMAJ 2009; 180 (2): 183–93)

    Google Scholar 

  30. Herynkopf F, et al. Aprotinin in children undergoing correction of congenital heart defects. A double-blind pilot study. J Thorac Cardiovasc Surg. 1994;108:517–21.

    CAS  PubMed  Google Scholar 

  31. D’Errico CC, et al. The efficacy and cost of aprotinin in children undergoing reoperative open heart surgery. Anesth Analg. 1996;83:1193–9.

    Article  PubMed  Google Scholar 

  32. Miller BE, et al. Hematologic and economic impact of aprotinin in reoperative pediatric cardiac operations. Ann Thorac Surg. 1998;66:535–41.

    Article  CAS  PubMed  Google Scholar 

  33. Chauhan S, et al. Efficacy of aprotinin, epsilon aminocaproic acid, or combination in cyanotic heart disease. Ann Thorac Surg. 2000;70:1308–12.

    Article  CAS  PubMed  Google Scholar 

  34. Bulutcu FS, et al. Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin, or a combination? Pediatr Anaesth. 2005;15:41–6.

    Article  Google Scholar 

  35. Arnold DM, et al. Avoiding transfusions in children undergoing cardiac surgery: a meta-analysis of randomized trials of aprotinin. Anesth Analg. 2006;102:731–7.

    Article  PubMed  Google Scholar 

  36. Davies MJ, et al. Prospective, randomized, double-blind study of high-dose aprotinin in pediatric cardiac operations. Ann Thorac Surg. 1997;63:497–503.

    Article  CAS  PubMed  Google Scholar 

  37. Boldt J, et al. Aprotinin in pediatric cardiac operations: platelet function, blood loss, and use of homologous blood. Ann Thorac Surg. 1993a;55:1460–6.

    Article  CAS  PubMed  Google Scholar 

  38. Boldt J, et al. Comparison of two aprotinin dosage regimens in pediatric patients having cardiac operations: influence on platelet function and blood loss. J Thorac Cardiovasc Surg. 1993b;105:705–11.

    CAS  PubMed  Google Scholar 

  39. Williams GD, et al. A randomized, controlled trial of aprotinin in neonates undergoing open-heart surgery. Paediatr Anaesth. 2008;18:812–9.

    Article  PubMed  Google Scholar 

  40. Mangano DT, et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA. 2007;297:471–9.

    Article  CAS  PubMed  Google Scholar 

  41. Schneeweiss S, et al. Aprotinin during coronary-artery bypass grafting and risk of death. N Engl J Med. 2008;358:771–83.

    Article  CAS  PubMed  Google Scholar 

  42. Shaw AD, et al. The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med. 2008;358:784–93.

    Article  CAS  PubMed  Google Scholar 

  43. Mangano DT, et al. The risk associated with aprotinin in cardiac surgery. N Engl J Med. 2006;354:353–65.

    Article  CAS  PubMed  Google Scholar 

  44. Fergusson DA, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358:2319–31.

    Article  CAS  PubMed  Google Scholar 

  45. Henry D, et al. The safety of aprotinin and lysine-derived antifibrinolytic drugs in cardiac surgery: a meta-analysis. CMAJ. 2009;180(2):183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pasquali SK, et al. Safety of aprotinin in congenital heart operations: results from a large multicenter database. Ann Thorac Surg. 2010;90(1):14–21.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gerstein NS, et al. Antifibrinolytic agents in cardiac and noncardiac surgery: a comprehensive overview and update. J Cardiothorac Vasc Anesth. 2017;31:2183–205.

    Article  PubMed  Google Scholar 

  48. Soslau G, et al. Effect of tranexamic acid on platelet ADP during extracorporeal circulation. Am J Hematol. 1991;38:113–9.

    Article  CAS  PubMed  Google Scholar 

  49. McClure PD, Izsak J. The use of epsilon-aminocaproic acid to reduce bleeding during cardiac bypass in children with congenital heart disease. Anesthesiology. 1974;40:604–8.

    Article  CAS  PubMed  Google Scholar 

  50. Williams GD, et al. Efficacy of epsilon-aminocaproic acid in children undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 1999;13(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  51. Rao BH, et al. Epsilon aminocaproic acid in paediatric cardiac surgery to reduce postoperative blood loss. Indian J Med Res. 2000;111:57–61.

    CAS  PubMed  Google Scholar 

  52. Lu J, et al. Epsilon aminocaproic acid reduces blood transfusion and improves the coagulation test after pediatric open-heart surgery: a meta-analysis of 5 clinical trials. Int J Clin Exp Path. 2015;8(7):7978–87.

    CAS  Google Scholar 

  53. Zonis Z, et al. The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg. 1996;111:982–7.

    Article  CAS  PubMed  Google Scholar 

  54. Reid R, et al. The efficacy of tranexamic acid versus placebo in decreasing blood loss in pediatric patients undergoing repeat cardiac surgery. Anesth Analg. 1997;84(5):990–6.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma V, et al. The association between tranexamic acid and convulsive seizures after cardiac surgery: a multivariate analysis in 11,529 patients. Anaesthesia. 2014;69:124–30.

    Article  CAS  PubMed  Google Scholar 

  56. Koster A, et al. Moderate dosage of tranexamic acid during cardiac surgery with cardiopulmonary bypass and convulsive seizures: incidence and clinical outcome. Br J Anaesth. 2013;110:34–40.

    Article  CAS  PubMed  Google Scholar 

  57. Manji RA, et al. Seizures following cardiac surgery: the impact of tranexamic acid and other risk factors. Can J Anaesth. 2012;59:6–13.

    Article  PubMed  Google Scholar 

  58. Kalavrouziotis D, et al. High-dose tranexamic acid is an independent predictor of early seizure after cardiopulmonary bypass. Ann Thorac Surg. 2012;93(1):148–54.

    Article  PubMed  Google Scholar 

  59. Keyl C, et al. High-dose tranexamic acid is related to increased risk of generalized seizures after aortic valve replacement. Eur J Cardiothorac Surg. 2011;39(5):e114–21.

    Article  PubMed  Google Scholar 

  60. Lin Z, Xiaoyi Z. Tranexamic acid-associated seizures: a meta-analysis. Seizure. 2016;36:70–3.

    Article  PubMed  Google Scholar 

  61. Martin K, Breuer T, Gerler R, Hapfelmeier A, Schreiber C, Lange R, Hess J, Wiesner G. Transexamic acid versus ε-aminocaproic acid: efficacy and safety in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2011a;39(6):892–7.

    Article  PubMed  Google Scholar 

  62. Chauhan S, et al. Comparison of epsilon aminocaproic acid and tranexamic acid in pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18(2):141–3.

    Article  CAS  PubMed  Google Scholar 

  63. Martin K, et al. Tranexamic acid versus epsilon-aminocaproic acid: efficacy and safety in paediatric cardiac surgery. Eur J Cardiothorac Surg. 2011b;39(6):892–7.

    Article  PubMed  Google Scholar 

  64. Schouten ES, et al. The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: a meta-analysis. Pediatr Crit Care Med. 2009;10(2):182–90.

    Article  PubMed  Google Scholar 

  65. Pasquali SK, et al. Comparative analysis of antifibrinolytic medications in pediatric heart surgery. J Thorac Cardiovasc Surg. 2012;143(3):550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cholette JM et al. Patient blood management in pediatric cardiac surgery: a review. Anesth Analg. 2017 Oct 5: e-published ahead of print.

    Google Scholar 

  67. De Somer F, et al. Low extracorporeal priming volumes for infants: a benefit? Perfusion. 1996;11:455–60.

    Article  PubMed  Google Scholar 

  68. Miyaji K, Kohira S, Miyamoto T, et al. Pediatric cardiac surgery without homologous blood transfusion, using a miniaturized bypass system in infants with lower body weight. J Thorac Cardiovasc Surg. 2007;134:284–9.

    Article  PubMed  Google Scholar 

  69. Redlin M, Huebler M, Boettcher W, et al. Minimizing intra-operative hemodilution by use of a very low priming volume cardiopulmonary bypass in neonates with transposition of the great arteries. J Thorac Cardiovasc Surg. 2011;142:875–81.

    Article  PubMed  Google Scholar 

  70. Redlin M, Habazettl H, Boettcher W, et al. Effects of a comprehensive blood-sparing approach using body weight-adjusted miniaturized cardiopulmonary bypass circuits on transfusion requirements in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2012;144:493–9.

    Article  PubMed  Google Scholar 

  71. Richmond ME, Charette K, Chen JM, Quaegebeur JM, Bacha E. The effect of cardiopulmonary bypass prime volume on the need for blood transfusion after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2013;145:1058–64.

    Article  PubMed  Google Scholar 

  72. Durandy Y. Usefulness of low prime perfusion pediatric circuit in decreasing blood transfusion. ASAIO J. 2007;53:659–61.

    Article  PubMed  Google Scholar 

  73. Draaisma AM, et al. Modified ultrafiltration after cardiopulmonary bypass in pediatric cardiac surgery. Ann Thorac Surg. 1997;64:521–5.

    Article  CAS  PubMed  Google Scholar 

  74. Jonas RA, et al. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–74.

    Article  PubMed  Google Scholar 

  75. Newburger JW, et al. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135:347–54.

    Article  PubMed  Google Scholar 

  76. Wypij D, et al. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials. J Thorac Cardiovasc Surg. 2008;135:355–60.

    Article  PubMed  Google Scholar 

  77. Naguib AN, Winch PD, Tobias JD, et al. A single-center strategy to minimize blood transfusion in neonates and children under- going cardiac surgery. Paediatr Anaesth. 2015;25:477–86.

    Article  PubMed  Google Scholar 

  78. Budak AB, McCusker K, Gunaydin S. A structured blood conservation program in pediatric cardiac surgery. Eur Rev Med Pharmacol Sci. 2017;21:1074–9.

    CAS  PubMed  Google Scholar 

  79. Karimi M, Florentino-Pineda I, Weatherred T, et al. Blood conservation operations in pediatric cardiac patients: a paradigm shift of blood use. Ann Thorac Surg. 2013;95:962–7.

    Article  PubMed  Google Scholar 

  80. Olshove VF, et al. Perfusion techniques toward bloodless pediatric open heart surgery. JECT. 2010;42:122–7.

    Google Scholar 

  81. Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991;84(5 Suppl III):422–31.

    Google Scholar 

  82. Wang S, Palanzo D, Undar A. Current ultrafiltration techniques before, during, and after pediatric cardiopulmonary bypass procedures. Perfusion. 2012;27:438–46.

    Article  CAS  PubMed  Google Scholar 

  83. Thompson LD, McElhinney DB, Findlay P, et al. A prospective randomized study comparing volume-standardized modified and conventional ultrafiltration in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2001;122:220–8.

    Article  CAS  PubMed  Google Scholar 

  84. Golab HD, Kissler J, de Jong PL, van de Woestijne PC, Takkenberg JJ, Bogers AJ. Clinical outcome and blood transfusion after infant cardiac surgery with a routine use of conventional ultrafiltration. Perfusion. 2015;30:323–31.

    Article  CAS  PubMed  Google Scholar 

  85. Kuranti N, Busangjaroen P, Srimueang T, et al. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg. 2011;142:861–7.

    Article  Google Scholar 

  86. Bando K, et al. Effect of modified ultrafiltration in high-risk patients undergoing operations for congenital heart disease. Ann Thorac Surg. 1998;66:821–8.

    Article  CAS  PubMed  Google Scholar 

  87. Journois D, Israel-Biet D, Pouard P, et al. High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology. 1996;85:965–76.

    Article  CAS  PubMed  Google Scholar 

  88. Mou SS, Giroir BP, Molitor-Kirsch EA, et al. Fresh whole blood versus reconstituted blood for pump priming in heart surgery in infants. N Engl J Med. 2004;351:1635–44.

    Article  CAS  PubMed  Google Scholar 

  89. Manno CS, Hedberg KW, Kim HC, et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood. 1991;77:930–6.

    CAS  PubMed  Google Scholar 

  90. Valleley MS, Buckley KW, Hayes KM, Fortuna RR, Geiss DM, Holt DW. Are there benefits to a fresh whole blood vs. packed red blood cell cardiopulmonary bypass prime on outcomes in neonatal and pediatric cardiac surgery? J Extra Corpor Technol. 2007;39:168–76.

    PubMed  PubMed Central  Google Scholar 

  91. Gruenwald CE, McCrindle BW, Crawford-Lean L, et al. Reconstituted fresh whole blood improves clinical outcomes compared with stored component blood therapy for neonates undergoing cardiopulmonary bypass for cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg. 2008;136:1442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jobes DR, et al. Reduced transfusion requirement with use of fresh whole blood in pediatric cardiac surgical procedures. Ann Thorac Surg. 2015;99:1706–12.

    Article  PubMed  Google Scholar 

  93. Durandy Y. Use of blood products in pediatric cardiac surgery. Artif Organs. 2015;39(1):21–7.

    Article  PubMed  Google Scholar 

  94. McCall MM, et al. Fresh frozen plasma in the pediatric pump prime: a prospective, randomized trial. Ann Thorac Surg. 2004;77:983–7.

    Article  PubMed  Google Scholar 

  95. Lee JW, et al. Fresh frozen plasma in pump priming for congenital heart surgery: evaluation of effects on postoperative coagulation profiles using a fibrinogen assay and rotational thromboelastometry. Yonsei Med J. 2013;54:752–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miao X, et al. Evidence-based use of FFP: the influence of a priming strategy without FFP during CPB on postoperative coagulation and recovery in pediatric patients. Perfusion. 2015;30(2):140–7.

    Article  CAS  PubMed  Google Scholar 

  97. Faraoni D, Torres CS. No evidence to support a priming strategy with FFP in infants. Eur J Pediatr. 2014;173:1445–6.

    Article  PubMed  Google Scholar 

  98. Fedevych O, et al. Open cardiac surgery in the first hours of life using autologous umbilical cord blood. Eur J Cardiothorac Surg. 2011;40:985–9.

    PubMed  Google Scholar 

  99. Chasovskyi K, et al. Arterial switch operation in the first hours of life using autologous umbilical cord blood. Ann Thorac Surg. 2012;93:1571–6.

    Article  PubMed  Google Scholar 

  100. Chasovskyi K, et al. Tissue perfusion in neonates undergoing open-heart surgery using autologous umbilical cord blood or donor blood components. Perfusion. 2015;30(6):499–506.

    Article  CAS  PubMed  Google Scholar 

  101. Choi ES, et al. Cardiopulmonary bypass priming using autologous cord blood in neonatal congenital cardiac surgery. Korean Circ J. 2016;46(5):714–8.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Andreasen JB, et al. Marked changes in platelet count and function following pediatric congenital heart surgery. Pediatr Anesth. 2014;24:386–92.

    Article  Google Scholar 

  103. Miller BE, et al. Predicting and treating coagulopathies after cardiopulmonary bypass in children. Anesth Analg. 1997;85:1196–202.

    Article  CAS  PubMed  Google Scholar 

  104. Harker LA, et al. Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective alpha-granule release. Blood. 1980;56(5):824–34.

    CAS  PubMed  Google Scholar 

  105. Schoenfeld H, et al. Volume-reduced platelet concentrates. Curr Hematol Rep. 2006;5(1):82–8.

    PubMed  Google Scholar 

  106. Fergusson DA, Hebert P, Hogan DL, et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low–birth-weight infants. J Am Med Assoc. 2012;308:1443–51.

    Article  CAS  Google Scholar 

  107. Karam O, Tucci M, Bateman ST, et al. Association between length of storage of red blood cell units and outcome of critically ill children: a prospective observational study. Crit Care. 2010;142:R57. http://ccforum.com/content/14/2/R57

    Article  Google Scholar 

  108. Levi M, et al. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363:1791–800.

    Article  CAS  PubMed  Google Scholar 

  109. Downey L, et al. Recombinant factor VIIa is associated with increased thrombotic complications in pediatric cardiac surgery patients. Anesth Analg. 2017;124:1431–6.

    Article  PubMed  Google Scholar 

  110. Guzzetta NA, et al. Review of the off-label use of recombinant activated factor VII in pediatric cardiac surgery patients. Anesth Analg. 2012;115:364–78.

    Article  CAS  PubMed  Google Scholar 

  111. Galas FRBG, et al. Hemostatic effects of fibrinogen concentrate compared with cryoprecipitate in children after cardiac surgery: a randomized pilot trial. J Thorac Cardiovasc Surg. 2014;148:1647–55.

    Article  CAS  PubMed  Google Scholar 

  112. Ashikhmina E, et al. Prothrombin complex concentrates in pediatric cardiac surgery: the current state and the future. Ann Thorac Surg. 2017;104:1423–31.

    Article  PubMed  Google Scholar 

  113. Song HK, et al. Safety and efficacy of prothrombin complex concentrates for the treatment of coagulopathy after cardiac surgery. J Thorac Cardiovasc Surg. 2014;147:1036–40.

    Article  CAS  PubMed  Google Scholar 

  114. Ranucci M, et al. Randomized, double-blinded, placebo-controlled trial of fibrinogen concentrate supplementation after complex cardiac surgery. J Am Heart Assoc. 2015;4:1–10.

    Article  CAS  Google Scholar 

  115. Ghadimi K, et al. Prothrombin complex concentrates for bleeding in the perioperative setting. Anesth Analg. 2016;122:1287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Giorni C, et al. Use of Confidex to control perioperative bleeding in pediatric heart surgery: a prospective cohort study. Pediatr Cardiol. 2014;35:208–14.

    Article  PubMed  Google Scholar 

  117. Willems A, et al. Comparison of two red-cell transfusion strategies after pediatric cardiac surgery: a subgroup analysis. Crit Care Med. 2010;38:649–56.

    Article  PubMed  Google Scholar 

  118. de Gast-Bakker DH, et al. Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized control trial. Intensive Care Med. 2013;39:2011–9.

    Article  PubMed  Google Scholar 

  119. Cholette JM, et al. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med. 2011;12:39–45.

    Article  PubMed  Google Scholar 

  120. Cholette JM, et al. Outcomes using a conservative versus liberal red blood cell transfusion strategy in infants requiring cardiac operation. Ann Thorac Surg. 2017b;103:206–15.

    Article  PubMed  Google Scholar 

  121. Gaynor JW, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015;135(5):816–25.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Morton PD, et al. Neurodevelopmental abnormalities and congenital heart disease: insights into altered brain maturation. Circ Res. 2017;120:960–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Moskowitz DM, et al. Predictors of transfusion requirements for cardiac surgical procedures at a blood conservation center. Ann Thorac Surg. 2004;77:626–34.

    Article  PubMed  Google Scholar 

  124. Haas T, et al. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? Br J Anaesth. 2015;114(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  125. Segal JB, Dzik WH. Transfusion Medicine/Hemostasis Clinical Trials Network Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion. 2005;45:1413–25.

    Article  PubMed  Google Scholar 

  126. Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89:228–32.

    Article  CAS  PubMed  Google Scholar 

  127. Thiruvenkatarajan V, Pruett A, Adhikary SD. Coagulation testing in the perioperative period. Indian J Anaesth. 2014;58:565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shore-Lesserson L, et al. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88:312–9.

    CAS  PubMed  Google Scholar 

  129. Miller BE, et al. Rapid evaluation of coagulopathies after cardiopulmonary bypass in children using modified thromboelastography. Anesth Analg. 2000;90:1324–30.

    Article  CAS  PubMed  Google Scholar 

  130. Romlin BS, et al. Intraoperative thromboelastometry is associated with reduced transfusion prevalence in pediatric cardiac surgery. Anesth Analg. 2011 Jan;112(1):30–6.

    Article  PubMed  Google Scholar 

  131. Whitney G, et al. Implementation of a transfusion algorithm to reduce blood product utilization in pediatric cardiac surgery. Pediatr Anesth. 2013;23:639–46.

    Article  Google Scholar 

  132. Faraoni D, et al. Development of a specific algorithm to guide haemostatic therapy in children undergoing cardiac surgery: a single-Centre retrospective study. Eur J Anaesthesiol. 2015;32:320–9.

    Article  PubMed  Google Scholar 

  133. Nakayama Y, Nakajima Y, Tanaka KA, et al. Thromboelastometry-guided intraoperative haemostatic management reduces bleeding and red cell transfusion after paediatric cardiac surgery. Br J Anaesth. 2015;114:91–102.

    Article  CAS  PubMed  Google Scholar 

  134. Kim E, et al. Predictive value of intraoperative Thromboelastometry for the risk of perioperative excessive blood loss in infants and children undergoing congenital cardiac surgery: a retrospective analysis. J Cardiothorac Vasc Anesth. 2016;30(5):1172–8.

    Article  PubMed  Google Scholar 

  135. Kane LC, et al. Thromboelastography—does it impact blood component transfusion in pediatric heart surgery? J Surg Res. 2016;200:21–7.

    Article  PubMed  Google Scholar 

  136. Society of Thoracic Surgeons Blood Conservation Guideline Task Force et al. 2011 update to the Society of Thoracic Surgeons and the Society of Cardiovascular Anesthesiologists blood conservation clinical practice guidelines. Ann Thorac Surg. 2011 Mar;91(3):944–82.

    Article  Google Scholar 

  137. Karkouti K, McCluskey SA, Callum J, et al. Evaluation of a novel transfusion algorithm employing point-of-care coagulation assays in cardiac surgery: a retrospective cohort study with interrupted time-series analysis. Anesthesiology. 2015;122:560–70.

    Article  CAS  PubMed  Google Scholar 

  138. American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: an updated report by the ASA task force on perioperative blood management. Anesthesiology. 2015;122:241–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott G. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbasi, R.K., Cossu, A.E., Walker, S.G. (2019). Management of Cardiopulmonary Bypass-Associated Coagulopathy. In: Mastropietro, C., Valentine, K. (eds) Pediatric Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-319-96499-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96499-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96498-0

  • Online ISBN: 978-3-319-96499-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics