Advertisement

Exploring Movement and Direction in Animal Science

Chapter
  • 601 Downloads

Abstract

Movement and direction are explored across several nonhuman animal studies, such as wolves, whales, cows, monkeys, birds, and schooling fish revealing insights about emergent properties of collective interactions. Exploring collective processes governed by social norms shared across nonhuman animal groups within the larger context of the increased pressures caused by human activity invokes innovative critical comparisons when considering human behavior.

Keywords

Subselves directionDirection locomotionLocomotion movementMovement Shy Fish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander, R. M. (2003). Principles of locomotion. Princeton, NJ: Princeton University Press.Google Scholar
  2. Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in Humpback Whales. Science, 340, 485–488.  https://doi.org/10.1126/science.1232769.CrossRefPubMedGoogle Scholar
  3. Arnold, T. W., & Zink, R. M. (2011). Collision mortality has no discernible effect on population trends of North American birds. PLoS One, 6(9).  https://doi.org/10.1371/journal.pone.0024708.CrossRefGoogle Scholar
  4. Bailey, I., Myatt, J. P., & Wilson, A. M. (2013). Group hunting within the Carnivora: Physiological, cognitive and environmental influences on strategy and cooperation. Behavioral Ecology and Sociobiology, 67(1), 1–17.  https://doi.org/10.1007/s00265-012-1423-3.CrossRefGoogle Scholar
  5. Beckmann, J. P., Clevenger, A. P., Huijser, M. P., & Hilty, J. A. (Eds.). (2012). Safe passages: Highways, wildlife, and habitat connectivity. Washington, DC: Island Press.Google Scholar
  6. Bejan, A., & Marden, J. H. (2006). Constructing animal locomotion from new thermodynamics theory. American Scientist, 94(861), 342–349.CrossRefGoogle Scholar
  7. Biewener, A. A. (2003). Animal locomotion. New York, NY: Oxford University Press.Google Scholar
  8. Brüssow, H. (2016). Biome engineering—2020. Microbial Biotechnology, 9(5), 553–563.  https://doi.org/10.1111/1751-7915.12391.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cao, M., Olshevsky, A., & Xia, W. (2014). Focused first followers accelerate aligning followers with the leader in reaching network consensus. Proceedings of the 19th world congress the international federation of automatic control (pp. 10042–10047). Cape Town, South Africa.  https://doi.org/10.3182/20140824-6-za-1003.01839.CrossRefGoogle Scholar
  10. Chapman, J. W., Klaassen, R. H., Drake, V. A., Fossette, S., Hays, G. C., Metcalfe, J. D., …, Alerstam, T. (2011). Animal orientation strategies for movement in flows. Current Biology, 21(20), R861–R870.  https://doi.org/10.1016/j.cub.2011.08.014.CrossRefGoogle Scholar
  11. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animals on the move. Nature, 433, 513–516.  https://doi.org/10.1038/nature03236.CrossRefPubMedGoogle Scholar
  12. Fischer, J., & Lindenmayer, D. B. (2000). An assessment of the published results of animal relocations. Biological Conservation, 96, 1–11.  https://doi.org/10.1016/S0006-3207(00)00048-3.CrossRefGoogle Scholar
  13. Flack, A., Biro, D., Guilford, T., & Freeman, R. (2015). Modelling group navigation: Transitive social structures improve navigational performance. Journal of the Royal Society Interface, 12(108).  https://doi.org/10.1098/rsif.2015.0213.CrossRefGoogle Scholar
  14. Gee, H. (2013). The accidental species: Misunderstandings of human evolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  15. Gehring, J., Kerlinger, P., & Manville, A. M. (2009). Communication towers, lights, and birds: Successful methods for reducing the frequency of avian collisions. Ecological Applications, 19(2), 505–514.  https://doi.org/10.1890/07-1708.1.CrossRefPubMedGoogle Scholar
  16. Griffith, B., Scott, J. M., Carpenter, J. W., & Reed, C. (1989). Translocation as a species conservation tool: Status and strategy. Science, 245(4917), 477–480.  https://doi.org/10.1126/science.245.4917.477.CrossRefPubMedGoogle Scholar
  17. Guttall, V., & Couzin, I. D. (2010). Social interactions, information use, and the evolution of collective migration. Proceedings of the National Academy of Sciences, 107(37), 16172–16177.  https://doi.org/10.1073/pnas.1006874107.CrossRefGoogle Scholar
  18. Haydon, D. T., Morales, J. M., Yott, A., Jenkins, D. A., Rosatte, R., & Fryxell, J. M. (2008). Socially informed random walks: Incorporating group dynamics into models of population spread and growth. Proceedings of the Royal Society, 275, 1101–1109.  https://doi.org/10.1098/rspb.2007.1688.CrossRefGoogle Scholar
  19. Hemelrijk, C. K., & Hildenbrandt, H. (2012). Schools of fish and flocks of birds: Their shape and internal structure by self-organization. Interface Focus, 2, 726–737.  https://doi.org/10.1098/rsfs.2012.0025.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hopewell, L. J., Leaver, L. A., & Lea, S. E. (2008). Effects of competition and food availability on travel time in scatter-hoarding gray squirrels (Sciurus carolinensis). Behavioral Ecology, 19, 1143–1149.  https://doi.org/10.1093/beheco/arn095.CrossRefGoogle Scholar
  21. Hutchinson, M., Vickers, M. H., Jackson, D., & Wilkes, L. (2006). Like wolves in a pack: Predatory alliances of bullies in nursing. Journal of Management and Organization, 12(3), 235–250.  https://doi.org/10.1017/S1833367200003989.CrossRefGoogle Scholar
  22. Jachowski, D. S., & Singh, N. J. (2015). Toward a mechanistic understanding of animal migration: Incorporating physiological measurements in the study of animal movement. Conservation Physiology, 3, 1–12.  https://doi.org/10.1093/conphys/cov035.CrossRefGoogle Scholar
  23. Kenrick, D. T., & Griskevicius, V. (2013). The rational animal. New York, NY: Basic Books.Google Scholar
  24. Levitis, D. A., Lidicker, W. Z., & Freund, G. (2009). Behavioural biologists do not agree on what constitutes behaviour. Animal Behavior, 78, 103–110.  https://doi.org/10.1016/j.anbehav.2009.03.018.CrossRefGoogle Scholar
  25. Linklater, W. L., Cameron, E. Z., Stafford, K. J., & Minot, E. O. (2013). Removal experiments indicate that subordinate stallions are not helpers. Behavioural Processes, 94, 1–4.  https://doi.org/10.1016/j.beproc.2013.02.005.CrossRefPubMedGoogle Scholar
  26. Lowe, T. (2015, May). NAEBA’s position on wild elk relocation projects. North American Elk, pp. 1–2.Google Scholar
  27. Marras, S., Killen, S. S., Lindström, J., McKenzie, D. J., Steffensen, J. F., & Domenici, P. (2015). Fish swimming in schools save energy regardless of their spatial position. Behavioral Ecology and Sociobiology, 69(2), 219–226.  https://doi.org/10.1007/s00265-014-1834-4.CrossRefPubMedGoogle Scholar
  28. Mech, L. D. (1966). The wolves of Isle Royale. Fauna of the national parks of the United States. Washington, DC: U.S. Government Printing Office. Retrieved from: https://www.nps.gov/parkhistory/online_books/fauna7/fauna.htm.
  29. Mech, L. D. (1999). Alpha status, dominance, and division of labor in wolf packs. Canadian Journal of Zoology, 77(8), 1196–1203.  https://doi.org/10.1139/cjz-77-8-1196.CrossRefGoogle Scholar
  30. Meglich, P. A., & Gumbus, A. (2015). Alpha and omega: When bullies run in packs. Journal of Leadership and Organizational Studies, 22(4), 377–386.  https://doi.org/10.1177/1548051815594008.CrossRefGoogle Scholar
  31. Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural Processes, 88, 192–197.  https://doi.org/10.1016/j.beproc.2011.09.006.CrossRefPubMedGoogle Scholar
  32. Nakayama, S., Stumpe, M. C., Manica, A., & Johnstone, R. A. (2013). Experience overrides personality differences in the tendency to follow but not in the tendency to lead. Proceedings of the Royal Society, 280.  https://doi.org/10.1098/rspb.2013.1724.CrossRefGoogle Scholar
  33. Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19052–19059.  https://doi.org/10.1073/pnas.0800375105.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. Ecological Biology, 87–110.  https://doi.org/10.1207/s15326969eco1302_2.CrossRefGoogle Scholar
  35. Newton, I. (2008). The migration ecology of birds. London: Elsevier.Google Scholar
  36. Pellis, S. M., Pellis, V. C., & Iwaniuk, A. N. (2014). Pattern in behavior: The characterization, origins, and evolution of behavior patterns. In M. Naguib, L. Barrett, H. J. Brockmann, S. Healy, J. C. Mitani, T. J. Roper, & L. W. Simmons (Eds.), Advances in the study of behavior (Vol. 46, pp. 127–189). Oxford: Elsevier.Google Scholar
  37. Pike, T. W., & Laland, K. N. (2010). Conformist learning in nine-spined sticklebacks’ foraging decisions. Biology Letters, 466–468.  https://doi.org/10.1098/rsbl.2009.1014.CrossRefGoogle Scholar
  38. Popp, J. N., Toman, T., Mallory, F. F., & Hamr, J. (2014). A century of elk restoration in Eastern North America. Restoration Ecology, 22(6), 723–730.  https://doi.org/10.1111/rec.12150.CrossRefGoogle Scholar
  39. Portugal, S. J., Hubel, T. Y., Fritz, J., Heese, S., Trobe, D., Voekl, B., …, Usherwood, J. R. (2014). Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature, 505, 399–402.  https://doi.org/10.1038/nature12939.CrossRefPubMedGoogle Scholar
  40. Reinhardt, V., & Reinhardt, A. (1981). Cohesive relationships in a cattle herd (Bos indicus). Behaviour, 77(3), 121–151.  https://doi.org/10.1163/156853981X00194.CrossRefGoogle Scholar
  41. Rosatte, R., Hamr, J., Young, J., Filion, I., & Smith, H. (2007). The restoration of Elk (Cervus elaphus) in Ontariao, Canada: 1998–2005. Restoration Ecology, 15(1).  https://doi.org/10.1111/j.1526-100x.2006.00187.x.CrossRefGoogle Scholar
  42. Šárová, R., Špinka, M., Panamá, J. L., & Šimeček, P. (2010). Graded leadership by dominant animals in a herd of female beef cattle on pasture. Animal Behaviour, 79, 1037–1045.  https://doi.org/10.1016/j.anbehav.2010.01.019.CrossRefGoogle Scholar
  43. Schwartz, M. W., Hellmann, J. J., McLachlan, J. M., Sax, D. F., Borevitz, J. O., Brennan, J., …, Early, R. (2012). Managed relocation: Integrating the scientific, regulatory, and ethical challenges. BioScience, 62(8), 732–743.  https://doi.org/10.1525/bio.2012.62.8.6.CrossRefGoogle Scholar
  44. Seeley, T. D. (1985). Honeybee ecology: A study of adaptation in social life. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  45. Seoane, N. (2015). Modelling free-range cattle movements in forests using multistate random walks. Journal of Biological Systems, 23(1), S43–S54.  https://doi.org/10.1142/S0218339015400045.CrossRefGoogle Scholar
  46. Sigurjonsdottir, H., Thorhallsdottir, A. G., Hafthorsdottir, H. M., & Granquist, S. M. (2012). The behaviour of stallions in a semiferal herd in Iceland: Time budgets, home ranges, and interactions. International Journal of Zoology.  https://doi.org/10.1155/2012/162982.CrossRefGoogle Scholar
  47. Smith, C. M., & Sullivan, C. (2007). The top 10 myths about evolution. Amherst, NY: Prometheus Books.Google Scholar
  48. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: Exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804–810.  https://doi.org/10.1038/nature06244.CrossRefPubMedPubMedCentralGoogle Scholar
  49. van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340, 483–485.  https://doi.org/10.1126/science.1232769.CrossRefPubMedGoogle Scholar
  50. Voelkl, B., Portugal, S. J., Unsöld, M., Usherwood, J. R., Wilson, A. M., & Fritz, J. (2015). Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. Proceedings of the National Academies of Sciences, 112(7), 2115–2120.  https://doi.org/10.1073/pnas.1413589112.CrossRefGoogle Scholar
  51. Ward, A. J., Krause, J., & Sumpter, D. J. (2012). Quorum decision-making in forgaing fish shoals. PLoS One, 7(3).  https://doi.org/10.1371/journal.pone.0032411.CrossRefGoogle Scholar
  52. Xing, B., & Gao, W.-J. (2014). Biology-based CI algorithms. In J. Kacprzyk & L. C. Jain (Eds.), Innovative computational intelligence: A rough guide to 134 clever algorithms. Cham: Springer.CrossRefGoogle Scholar
  53. Zitterbart, D. P., Wienecke, B., Butler, J. P., & Fabry, B. (2011). Coordinated movements prevent jamming in an Emperor Penguin huddle. PLoS One, 6(6).  https://doi.org/10.1371/journal.pone.0020260.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA
  2. 2.Arizona State UniversityPhoenixUSA

Personalised recommendations