Skip to main content

Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation

  • Chapter
  • First Online:

Abstract

A new space–time (ST) computational method, “ST-SI-TC-IGA,” is enabling us to address the challenges faced in computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, the moving-mesh feature of the ST framework enables high-resolution computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-SI enables high-resolution representation of the boundary layers near the tire. The mesh covering the tire spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire-road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire surfaces and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two models of flow around a rotating tire with road contact and prescribed deformation. One is a simple 2D model, and one is a 3D model with an actual tire geometry that includes the longitudinal and transverse grooves. The computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods”, Computers & Fluids, 158 (2017) 176–188, https://doi.org/10.1016/j.compfluid.2016.11.012.

    Article  MathSciNet  Google Scholar 

  2. K. Takizawa and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques”, Computational Mechanics, 48 (2011) 247–267, https://doi.org/10.1007/s00466-011-0571-z.

    Article  MathSciNet  Google Scholar 

  3. K. Takizawa and T.E. Tezduyar, “Space–time fluid–structure interaction methods”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230001, https://doi.org/10.1142/S0218202512300013.

    Article  MathSciNet  Google Scholar 

  4. K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2227–2255, https://doi.org/10.1142/S0218202515400072.

    Article  MathSciNet  Google Scholar 

  5. K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406, https://doi.org/10.1142/S0218202515400126.

    Article  MathSciNet  Google Scholar 

  6. K. Takizawa, T.E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi, “Computational thermo-fluid analysis of a disk brake”, Computational Mechanics, 57 (2016) 965–977, https://doi.org/10.1007/s00466-016-1272-4.

    Article  MathSciNet  Google Scholar 

  7. K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time interface-tracking with topology change (ST-TC)”, Computational Mechanics, 54 (2014) 955–971, https://doi.org/10.1007/s00466-013-0935-7.

    Article  MathSciNet  Google Scholar 

  8. K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time fluid mechanics computation of heart valve models”, Computational Mechanics, 54 (2014) 973–986, https://doi.org/10.1007/s00466-014-1046-9.

    Article  Google Scholar 

  9. K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space–time computational techniques for the aerodynamics of flapping wings”, Journal of Applied Mechanics, 79 (2012) 010903, https://doi.org/10.1115/1.4005073.

    Article  Google Scholar 

  10. K. Takizawa, T.E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori, “Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA)”, Computers & Fluids, 142 (2017) 15–20, https://doi.org/10.1016/j.compfluid.2016.02.021.

    Article  MathSciNet  Google Scholar 

  11. T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1–44, https://doi.org/10.1016/S0065-2156(08)70153-4.

    MathSciNet  MATH  Google Scholar 

  12. T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555–575, https://doi.org/10.1002/fld.505.

    Article  MathSciNet  Google Scholar 

  13. T.E. Tezduyar and S. Sathe, “Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques”, International Journal for Numerical Methods in Fluids, 54 (2007) 855–900, https://doi.org/10.1002/fld.1430.

    Article  MathSciNet  Google Scholar 

  14. A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.

    Article  MathSciNet  Google Scholar 

  15. T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.

    Article  MathSciNet  Google Scholar 

  16. T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.

    Article  Google Scholar 

  17. Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.

    Article  MathSciNet  Google Scholar 

  18. Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.

    Article  MathSciNet  Google Scholar 

  19. T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.

    Article  MathSciNet  Google Scholar 

  20. Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.

    Article  MathSciNet  Google Scholar 

  21. K. Takizawa, Y. Bazilevs, and T.E. Tezduyar, “Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling”, Archives of Computational Methods in Engineering, 19 (2012) 171–225, https://doi.org/10.1007/s11831-012-9071-3.

    Article  MathSciNet  Google Scholar 

  22. Y. Bazilevs, M.-C. Hsu, K. Takizawa, and T.E. Tezduyar, “ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230002, https://doi.org/10.1142/S0218202512300025.

    Article  Google Scholar 

  23. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN 978-0470978771.

    Book  Google Scholar 

  24. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “Challenges and directions in computational fluid–structure interaction”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 215–221, https://doi.org/10.1142/S0218202513400010.

    Article  MathSciNet  Google Scholar 

  25. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, “New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2217–2226, https://doi.org/10.1142/S0218202515020029.

    Article  MathSciNet  Google Scholar 

  26. V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332, https://doi.org/10.1016/S0045-7825(00)00204-8.

    Article  Google Scholar 

  27. Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.

    Article  MathSciNet  Google Scholar 

  28. Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.

    Article  MathSciNet  Google Scholar 

  29. M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.

    Article  MathSciNet  Google Scholar 

  30. Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.

    Article  Google Scholar 

  31. M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.

    Article  Google Scholar 

  32. M.E. Moghadam, Y. Bazilevs, T.-Y. Hsia, I.E. Vignon-Clementel, A.L. Marsden, and M. of Congenital Hearts Alliance (MOCHA), “A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations”, Computational Mechanics, 48 (2011) 277–291, https://doi.org/10.1007/s00466-011-0599-0.

    Article  MathSciNet  Google Scholar 

  33. Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://doi.org/10.1002/fld.2400.

    Article  Google Scholar 

  34. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.

    Article  Google Scholar 

  35. M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.

    Article  MathSciNet  Google Scholar 

  36. Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.

    Article  MathSciNet  Google Scholar 

  37. M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.

    Article  Google Scholar 

  38. A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.

    Article  MathSciNet  Google Scholar 

  39. Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre, “Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods”, Archives of Computational Methods in Engineering, 21 (2014) 359–398, https://doi.org/10.1007/s11831-014-9119-7.

    Article  MathSciNet  Google Scholar 

  40. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines”, International Journal for Numerical Methods in Engineering, 102 (2015) 766–783, https://doi.org/10.1002/nme.4738.

    Article  MathSciNet  Google Scholar 

  41. A. Korobenko, M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Aerodynamic simulation of vertical-axis wind turbines”, Journal of Applied Mechanics, 81 (2013) 021011, https://doi.org/10.1115/1.4024415.

    Article  Google Scholar 

  42. Y. Bazilevs, A. Korobenko, X. Deng, J. Yan, M. Kinzel, and J.O. Dabiri, “FSI modeling of vertical-axis wind turbines”, Journal of Applied Mechanics, 81 (2014) 081006, https://doi.org/10.1115/1.4027466.

    Article  Google Scholar 

  43. J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs, “Computational free-surface fluid–structure interaction with application to floating offshore wind turbines”, Computers and Fluids, 141 (2016) 155–174, https://doi.org/10.1016/j.compfluid.2016.03.008.

    Article  MathSciNet  Google Scholar 

  44. Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S.M.I. Gohari, and S. Sarkar, “ALE–VMS formulation for stratified turbulent incompressible flows with applications”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2349–2375, https://doi.org/10.1142/S0218202515400114.

    Article  MathSciNet  Google Scholar 

  45. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.

    Article  Google Scholar 

  46. Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.

    Article  MathSciNet  Google Scholar 

  47. Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.

    Article  MathSciNet  Google Scholar 

  48. Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.

    Article  MathSciNet  Google Scholar 

  49. Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.

    Article  MathSciNet  Google Scholar 

  50. Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.

    Article  Google Scholar 

  51. M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.

    Article  MathSciNet  Google Scholar 

  52. C.C. Long, A.L. Marsden, and Y. Bazilevs, “Fluid–structure interaction simulation of pulsatile ventricular assist devices”, Computational Mechanics, 52 (2013) 971–981, https://doi.org/10.1007/s00466-013-0858-3.

    Article  Google Scholar 

  53. C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs, “Computation of residence time in the simulation of pulsatile ventricular assist devices”, Computational Mechanics, 54 (2014) 911–919, https://doi.org/10.1007/s00466-013-0931-y.

    Article  MathSciNet  Google Scholar 

  54. C.C. Long, A.L. Marsden, and Y. Bazilevs, “Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk”, Computational Mechanics, 54 (2014) 921–932, https://doi.org/10.1007/s00466-013-0967-z.

    Article  MathSciNet  Google Scholar 

  55. M.-C. Hsu, D. Kamensky, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation”, Computational Mechanics, 54 (2014) 1055–1071, https://doi.org/10.1007/s00466-014-1059-4.

    Article  MathSciNet  Google Scholar 

  56. M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.

    Article  Google Scholar 

  57. D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.

    Article  MathSciNet  Google Scholar 

  58. I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.

    Article  Google Scholar 

  59. I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.

    Article  Google Scholar 

  60. C. Wang, M.C.H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs, “Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis”, Computers and Fluids, 142 (2017) 3–14, https://doi.org/10.1016/j.compfluid.2015.12.004.

    Article  MathSciNet  Google Scholar 

  61. M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://doi.org/doi:10.1016/j.cma.2016.09.032.

    Article  MathSciNet  Google Scholar 

  62. J. Yan, X. Deng, A. Korobenko, and Y. Bazilevs, “Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines”, Computers and Fluids, 158 (2017) 157–166, https://doi.org/10.1016/j.compfluid.2016.06.016.

    Article  MathSciNet  Google Scholar 

  63. B. Augier, J. Yan, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “Experimental and numerical FSI study of compliant hydrofoils”, Computational Mechanics, 55 (2015) 1079–1090, https://doi.org/10.1007/s00466-014-1090-5.

    Article  Google Scholar 

  64. J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration”, Computers and Fluids, 141 (2016) 201–211, https://doi.org/10.1016/j.compfluid.2015.07.013.

    Article  MathSciNet  Google Scholar 

  65. K. Takizawa and T.E. Tezduyar, “Computational methods for parachute fluid–structure interactions”, Archives of Computational Methods in Engineering, 19 (2012) 125–169, https://doi.org/10.1007/s11831-012-9070-4.

    Article  MathSciNet  Google Scholar 

  66. K. Takizawa, M. Fritze, D. Montes, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity”, Computational Mechanics, 50 (2012) 835–854, https://doi.org/10.1007/s00466-012-0761-3.

    Article  Google Scholar 

  67. K. Takizawa, T.E. Tezduyar, J. Boben, N. Kostov, C. Boswell, and A. Buscher, “Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity”, Computational Mechanics, 52 (2013) 1351–1364, https://doi.org/10.1007/s00466-013-0880-5.

    Article  Google Scholar 

  68. K. Takizawa, T.E. Tezduyar, C. Boswell, Y. Tsutsui, and K. Montel, “Special methods for aerodynamic-moment calculations from parachute FSI modeling”, Computational Mechanics, 55 (2015) 1059–1069, https://doi.org/10.1007/s00466-014-1074-5.

    Article  Google Scholar 

  69. K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 307–338, https://doi.org/10.1142/S0218202513400058.

    Article  MathSciNet  Google Scholar 

  70. K. Takizawa, T.E. Tezduyar, C. Boswell, R. Kolesar, and K. Montel, “FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes”, Computational Mechanics, 54 (2014) 1203–1220, https://doi.org/10.1007/s00466-014-1052-y.

    Article  Google Scholar 

  71. K. Takizawa, T.E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel, “Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes”, Computational Mechanics, 54 (2014) 1461–1476, https://doi.org/10.1007/s00466-014-1069-2.

    Article  MathSciNet  Google Scholar 

  72. K. Takizawa, T.E. Tezduyar, and R. Kolesar, “FSI modeling of the Orion spacecraft drogue parachutes”, Computational Mechanics, 55 (2015) 1167–1179, https://doi.org/10.1007/s00466-014-1108-z.

    Article  Google Scholar 

  73. K. Takizawa, B. Henicke, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 333–344, https://doi.org/10.1007/s00466-011-0589-2.

    Article  Google Scholar 

  74. K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 647–657, https://doi.org/10.1007/s00466-011-0614-5.

    Article  Google Scholar 

  75. K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space–time VMS computation of wind-turbine rotor and tower aerodynamics”, Computational Mechanics, 53 (2014) 1–15, https://doi.org/10.1007/s00466-013-0888-x.

    Article  Google Scholar 

  76. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.-C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALE-VMS and space–time methods”, Archives of Computational Methods in Engineering, 21 (2014) 481–508, https://doi.org/10.1007/s11831-014-9113-0.

    Article  MathSciNet  Google Scholar 

  77. K. Takizawa, “Computational engineering analysis with the new-generation space–time methods”, Computational Mechanics, 54 (2014) 193–211, https://doi.org/10.1007/s00466-014-0999-z.

    Article  MathSciNet  Google Scholar 

  78. K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust”, Computational Mechanics, 50 (2012) 743–760, https://doi.org/10.1007/s00466-012-0759-x.

    Article  Google Scholar 

  79. K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Computer modeling techniques for flapping-wing aerodynamics of a locust”, Computers & Fluids, 85 (2013) 125–134, https://doi.org/10.1016/j.compfluid.2012.11.008.

    Article  MathSciNet  Google Scholar 

  80. K. Takizawa, N. Kostov, A. Puntel, B. Henicke, and T.E. Tezduyar, “Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle”, Computational Mechanics, 50 (2012) 761–778, https://doi.org/10.1007/s00466-012-0758-y.

    Article  Google Scholar 

  81. K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Computational Mechanics, 54 (2014) 213–233, https://doi.org/10.1007/s00466-014-0980-x.

    Article  MathSciNet  Google Scholar 

  82. K. Takizawa, T.E. Tezduyar, and A. Buscher, “Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping”, Computational Mechanics, 55 (2015) 1131–1141, https://doi.org/10.1007/s00466-014-1095-0.

    Article  Google Scholar 

  83. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt, “ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling”, Mathematical Models and Methods in Applied Sciences, 24 (2014) 2437–2486, https://doi.org/10.1142/S0218202514500250.

    Article  MathSciNet  Google Scholar 

  84. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent”, Computational Mechanics, 50 (2012) 675–686, https://doi.org/10.1007/s00466-012-0760-4.

    Article  MathSciNet  Google Scholar 

  85. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms”, Computational Mechanics, 51 (2013) 1061–1073, https://doi.org/10.1007/s00466-012-0790-y.

    Article  MathSciNet  Google Scholar 

  86. H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, and T. Ueda, “FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta”, Computational Mechanics, 54 (2014) 1035–1045, https://doi.org/10.1007/s00466-014-1017-1.

    Article  Google Scholar 

  87. K. Takizawa, D. Montes, S. McIntyre, and T.E. Tezduyar, “Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 223–248, https://doi.org/10.1142/s0218202513400022.

    Article  MathSciNet  Google Scholar 

  88. K. Takizawa, T.E. Tezduyar, and H. Hattori, “Computational analysis of flow-driven string dynamics in turbomachinery”, Computers & Fluids, 142 (2017) 109–117, https://doi.org/10.1016/j.compfluid.2016.02.019.

    Article  MathSciNet  Google Scholar 

  89. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method”, Computers & Fluids, 158 (2017) 189–200, https://doi.org/10.1016/j.compfluid.2017.04.017.

    Article  MathSciNet  Google Scholar 

  90. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “A general-purpose NURBS mesh generation method for complex geometries”, to appear in a special volume to be published by Springer, 2018.

    Google Scholar 

  91. K. Takizawa, T.E. Tezduyar, S. Asada, and T. Kuraishi, “Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC)”, Computers & Fluids, 141 (2016) 124–134, https://doi.org/10.1016/j.compfluid.2016.05.006.

    Article  MathSciNet  Google Scholar 

  92. K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200, https://doi.org/10.1016/j.compfluid.2016.05.027.

    MathSciNet  MATH  Google Scholar 

  93. K. Takizawa, T.E. Tezduyar, and T. Kanai, “Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity”, Mathematical Models and Methods in Applied Sciences, 27 (2017) 771–806, https://doi.org/10.1142/S0218202517500166.

    MathSciNet  MATH  Google Scholar 

  94. T.E. Tezduyar, S.K. Aliabadi, M. Behr, and S. Mittal, “Massively parallel finite element simulation of compressible and incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 157–177, https://doi.org/10.1016/0045-7825(94)00082-4.

    MATH  Google Scholar 

  95. K. Takizawa and T.E. Tezduyar, “Space–time computation techniques with continuous representation in time (ST-C)”, Computational Mechanics, 53 (2014) 91–99, https://doi.org/10.1007/s00466-013-0895-y.

    MathSciNet  MATH  Google Scholar 

  96. T.E. Tezduyar and D.K. Ganjoo, “Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 49–71, https://doi.org/10.1016/0045-7825(86)90023-X.

    MATH  Google Scholar 

  97. G.J. Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Computer Methods in Applied Mechanics and Engineering, 104 (1993) 397–422, https://doi.org/10.1016/0045-7825(93)90033-T.

    MATH  Google Scholar 

  98. T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces”, Computers & Fluids, 36 (2007) 191–206, https://doi.org/10.1016/j.compfluid.2005.02.011.

    MathSciNet  MATH  Google Scholar 

  99. T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621–1632, https://doi.org/10.1016/j.cma.2005.05.032.

    MathSciNet  MATH  Google Scholar 

  100. T.E. Tezduyar and M. Senga, “SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing”, Computers & Fluids, 36 (2007) 147–159, https://doi.org/10.1016/j.compfluid.2005.07.009.

    MATH  Google Scholar 

  101. T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing”, Computational Mechanics, 38 (2006) 469–481, https://doi.org/10.1007/s00466-005-0025-6.

    MATH  Google Scholar 

  102. T.E. Tezduyar and S. Sathe, “Enhanced-discretization selective stabilization procedure (EDSSP)”, Computational Mechanics, 38 (2006) 456–468, https://doi.org/10.1007/s00466-006-0056-7.

    MATH  Google Scholar 

  103. A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation”, Computational Mechanics, 38 (2006) 356–364, https://doi.org/10.1007/s00466-006-0045-x.

    MathSciNet  MATH  Google Scholar 

  104. F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)”, Computers & Fluids, 36 (2007) 121–126, https://doi.org/10.1016/j.compfluid.2005.07.004.

    MATH  Google Scholar 

  105. T.E. Tezduyar, S. Ramakrishnan, and S. Sathe, “Stabilized formulations for incompressible flows with thermal coupling”, International Journal for Numerical Methods in Fluids, 57 (2008) 1189–1209, https://doi.org/10.1002/fld.1743.

    MathSciNet  MATH  Google Scholar 

  106. F. Rispoli, R. Saavedra, A. Corsini, and T.E. Tezduyar, “Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing”, International Journal for Numerical Methods in Fluids, 54 (2007) 695–706, https://doi.org/10.1002/fld.1447.

    MathSciNet  MATH  Google Scholar 

  107. Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery”, International Journal for Numerical Methods in Fluids, 54 (2007) 593–608, https://doi.org/10.1002/fld.1484.

    MathSciNet  MATH  Google Scholar 

  108. A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://doi.org/10.1115/1.3062967.

    Google Scholar 

  109. F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021209, https://doi.org/10.1115/1.3057496.

    Google Scholar 

  110. A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors”, Computational Mechanics, 46 (2010) 159–167, https://doi.org/10.1007/s00466-009-0441-0.

    MathSciNet  MATH  Google Scholar 

  111. M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828–840, https://doi.org/10.1016/j.cma.2009.06.019.

    MathSciNet  MATH  Google Scholar 

  112. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite element computation of NOx emission in aero-engine combustors”, International Journal for Numerical Methods in Fluids, 65 (2011) 254–270, https://doi.org/10.1002/fld.2451.

    MathSciNet  MATH  Google Scholar 

  113. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique”, Journal of Applied Mechanics, 79 (2012) 010910, https://doi.org/10.1115/1.4005060.

    Google Scholar 

  114. A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations”, Computational Mechanics, 50 (2012) 695–705, https://doi.org/10.1007/s00466-012-0789-4.

    MathSciNet  MATH  Google Scholar 

  115. P.A. Kler, L.D. Dalcin, R.R. Paz, and T.E. Tezduyar, “SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems”, Computational Mechanics, 51 (2013) 171–185, https://doi.org/10.1007/s00466-012-0712-z.

    MathSciNet  MATH  Google Scholar 

  116. A. Corsini, F. Rispoli, A.G. Sheard, K. Takizawa, T.E. Tezduyar, and P. Venturini, “A variational multiscale method for particle-cloud tracking in turbomachinery flows”, Computational Mechanics, 54 (2014) 1191–1202, https://doi.org/10.1007/s00466-014-1050-0.

    MathSciNet  MATH  Google Scholar 

  117. F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra, and T.E. Tezduyar, “Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing”, Computational Mechanics, 55 (2015) 1201–1209, https://doi.org/10.1007/s00466-015-1160-3.

    MathSciNet  MATH  Google Scholar 

  118. Y. Saad and M. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM Journal of Scientific and Statistical Computing, 7 (1986) 856–869.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported (first and second authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from JSPS; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement. The computational method parts of the work were also supported (third author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University. The tire deformation used in Sect. 5 was provided by Bridgestone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kuraishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuraishi, T., Takizawa, K., Tezduyar, T.E. (2018). Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_8

Download citation

Publish with us

Policies and ethics