Skip to main content

A Numerical Analysis of Rheology of Capsule Suspensions Using a GPU-Accelerated Boundary Element Method

  • Chapter
  • First Online:

Abstract

Understanding the behavior of capsules in flow and the rheology of capsule suspensions is of fundamental importance for diverse problems in nature and engineering. The particle Reynolds number of capsules is often small, and the flow field is given by the boundary integral formulation of the Stokes equations. The boundary element method (BEM) based on the boundary integral formulation is thus one of the most accurate methods for simulating capsules under Stokes flow regime. A high computational cost of BEM, however, has limited its application to relatively small scale problems. We have developed a graphics process unit (GPU) computing of BEM for capsules and biological cells in Stokes flow. We have investigated rheological properties of capsules, and those of capsule suspensions using the GPU-accelerated BEM. Here, we provide an overview of our recent studies, particularly focusing on the shear viscosity of dense suspensions of capsules in simple shear flow; an overshoot phenomenon of the capsule deformation in oscillating shear flow; and the sedimentation of red blood cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Barthès-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)

    Article  MathSciNet  Google Scholar 

  2. C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow (Cambridge University Press, 1992)

    Google Scholar 

  3. C. Pozrikidis, J. Fluid Mech. 297, 123 (1995)

    Article  Google Scholar 

  4. S. Ramanujan, C. Pozrikidis, J. Fluid Mech. 361, 117 (1998)

    Article  MathSciNet  Google Scholar 

  5. E. Lac, D. Barthès-Biesel, N.A. Pelekasis, J. Tsamopoulos, J. Fluid Mech. 516, 303 (2004)

    Article  MathSciNet  Google Scholar 

  6. J. Walter, A.V. Salsac, D. Barthès-Biesel, P. Le Tallec, Int. J. Numer. Meth. Eng. 83, 829 (2010)

    Google Scholar 

  7. É. Foessel, J. Walter, A.V. Salsac, Barthès-Biesel, J. Fluid Mech. 672, 477 (2011)

    Article  Google Scholar 

  8. J. Walter, A.V. Salsac, D. Barthès-Biesel, J. Fluid Mech. 676, 318 (2011)

    Article  MathSciNet  Google Scholar 

  9. C. Dupont, A.V. Salsac, D. Barthès-Biesel, J. Fluid Mech. 721, 180 (2013)

    Article  MathSciNet  Google Scholar 

  10. C. Dupont, F. Delahaye, D. Barthès-Biesel, A.V. Salsac, J. Fluid Mech. 791, 738 (2016)

    Article  MathSciNet  Google Scholar 

  11. T. Omori, Y. Imai, T. Yamaguchi, T. Ishikawa, Phys. Rev. Lett. 108, 138102 (2012)

    Article  Google Scholar 

  12. T. Omori, D. Ishikawa, T. Barthès-Biesel, A.V. Salsac, Y. Imai, T. Yamaguchi, Phys. Rev. E 86, 056321 (2012)

    Article  Google Scholar 

  13. D. Matsunaga, Y. Imai, T. Omori, T. Ishikawa, T. Yamaguchi, J. Biomech. Sci. Eng. 9, 00039 (2014)

    Article  Google Scholar 

  14. D. Matsunaga, Y. Imai, T. Yamaguchi, T. Ishikawa, J. Fluid. Mech. 786, 110 (2016)

    Article  MathSciNet  Google Scholar 

  15. D. Matsunaga, Y. Imai, T. Yamaguchi, T. Ishikawa, J. Fluid. Mech. 762, 288 (2015)

    Article  Google Scholar 

  16. D. Matsunaga, Y. Imai, C. Wagner, T. Ishikawa, J. Fluid. Mech. 806, 102 (2016)

    Article  MathSciNet  Google Scholar 

  17. D. Barthès-Biesel, Microhydrodynamics and Complex Fluids (CRC Press, 2012)

    Google Scholar 

  18. J.R. Blake, A.T. Chwang, J. Eng. Math. 8, 23 (1974)

    Article  Google Scholar 

  19. S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105147 (2012)

    Article  Google Scholar 

  20. S. Nix, Y. Imai, T. Ishikawa, J. Biomech. 49, 2249 (2016)

    Article  Google Scholar 

  21. C.W.J. Beenakker, J. Chem. Phys. 85, 1581 (1986)

    Article  Google Scholar 

  22. A.Z. Zinchenko, R.H. Davis, J. Comput. Phys. 207, 695 (2005)

    Article  Google Scholar 

  23. R. Skalak, A. Tozeren, R. Zarda, S. Chien, Biophys. J. 13, 245 (1973)

    Article  Google Scholar 

  24. W. Helfrich, Z. Naturforsch. C 28, 693 (1973)

    Google Scholar 

  25. O.Y. Zhong-can, W. Helfrich, Phys. Rev. A 39, 5280 (1989)

    Article  Google Scholar 

  26. T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A. Nukada, N. Maruyama, S. Matsuoka, in Proc. 2010 ACM/IEEE Int. Conf. High Performance Computing, Networking, Storage and Analysis (2010), pp. 1–11

    Google Scholar 

  27. A. Einstein, Ann. Physik 19, 289 (1906)

    Article  Google Scholar 

  28. D. Barthès-Biesel, J.M. Rallison, J. Fluid Mech. 113, 251 (1981)

    Article  Google Scholar 

  29. J.R. Clausen, D.A. Reasor, C.K. Aidun, J. Fluid Mech. 685, 202 (2011)

    Article  MathSciNet  Google Scholar 

  30. E. Guazzelli, F.J. Morris, A Physical Introduction to Suspension Dynamics (Cambridge University Press, 2012)

    Google Scholar 

  31. G.K. Batchelor, J. Fluid Mech. 41, 545 (1970)

    Article  Google Scholar 

  32. I.M. Krieger, T.J. Dougherty, T. Soc. Rheol. 3, 137 (1959)

    Google Scholar 

  33. G.Y. Onoda, E.G. Liniger, Phys. Rev. Lett. 64, 2727 (1990)

    Article  Google Scholar 

  34. M. Zhao, P. Bagchi, Phys. Fluids 23, 111901 (2011)

    Article  Google Scholar 

  35. D. Barthès-Biesel, H. Sgaier, J. Fluid Mech. 160, 119 (1985)

    Article  MathSciNet  Google Scholar 

  36. S. Baskrut, B. Neu, H.J. Meiselman, Red Blood Cell Aggregation (CRC Press, 2012)

    Google Scholar 

  37. A.C. Groom, J.C. Anderson, J. Cell. Physiol. 79, 127 (1972)

    Article  Google Scholar 

  38. J.F. Hoffman, S. Inoué, Proc. Natl. Acad. Sci. U. S. A. 103, 2971 (2006)

    Article  Google Scholar 

  39. E. Evans, Y.C. Fung, Microvasc. Res. 4, 335 (1972)

    Article  Google Scholar 

  40. S. Nix, Y. Imai, D. Matsunaga, T. Yamaguchi, T. Ishikawa, Phys. Rev. E 90, 043009 (2014)

    Article  Google Scholar 

  41. Y. Mogami, J. Ishii, A. Baba, Biol. Bull. 201, 26 (2001)

    Article  Google Scholar 

  42. S. Ishida, Y. Imai, Y. Ichikawa, S. Nix, D. Matsunaga, T. Omori, T. Ishikawa, Sci. Technol. Adv. Mater. 17, 454 (2016)

    Article  Google Scholar 

  43. K. Kyoya, D. Matsunaga, Y. Imai, T. Omori, T. Ishikawa, Phys. Rev. E 92, 063027 (2015)

    Article  Google Scholar 

  44. T. Ishikawa, T. Tanaka, Y. Imai, T. Omori, D. Matsunaga, Proc. Roy. Soc. Lond. A 472, 20150604 (2016)

    Article  Google Scholar 

  45. N. Takeishi, Y. Imai, K. Nakaaki, T. Yamaguchi, T. Ishikawa, Physiol. Rep. 2, e12037 (2014)

    Article  Google Scholar 

  46. N. Takeishi, Y. Imai, T. Yamaguchi, T. Ishikawa, Phys. Rev. E 92, 063011 (2015)

    Article  Google Scholar 

  47. N. Takeishi, Y. Imai, S. Ishida, T. Omori, R.D. Kamm, T. Ishikawa, Am. J. Physiol. Heart Circ. Physiol. 311, H395 (2016)

    Article  Google Scholar 

  48. N. Takeishi, Y. Imai, Sci. Rep. 7, 5381 (2017)

    Article  Google Scholar 

  49. S. Ishida, A. Ami, Y. Imai, Biophys. J. 113, 1163 (2017)

    Article  Google Scholar 

  50. T. Miki, X. Wang, T. Aoki, Y. Imai, T. Ishikawa, K. Takase, T. Yamaguchi, Comput. Meth. Biomech. Biomed. Eng. 15, 771 (2012)

    Article  Google Scholar 

  51. Y. Imai, T. Miki, T. Ishikawa, T. Aoki, T. Yamaguchi, J. Biomech. 45, 1809 (2012)

    Article  Google Scholar 

  52. R. Berry, T. Miyagawa, N. Paskaranandavadivel, P. Du, T.R. Angeli, M.L. Trew, J.A. Windsor, Y. Imai, G. O’Grady, L.K. Cheng, Am. J. Physiol. Gastrointest. Liver Physiol. 311, G895 (2016)

    Article  Google Scholar 

  53. T. Miyagawa, Y. Imai, S. Ishida, T. Ishikawa, Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1114 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant numbers 24680048, 25000008, 26107703, and 14J04025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohsuke Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imai, Y., Matsunaga, D. (2018). A Numerical Analysis of Rheology of Capsule Suspensions Using a GPU-Accelerated Boundary Element Method. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_6

Download citation

Publish with us

Policies and ethics