Skip to main content

Residual-Based Large Eddy Simulation with Isogeometric Divergence-Conforming Discretizations

  • Chapter
  • First Online:
Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

Isogeometric divergence-conforming discretizations have recently arisen as an attractive candidate for approximation of the incompressible Navier-Stokes problem. By construction, isogeometric divergence-conforming discretizations yield discrete velocity fields which are pointwise divergence-free, and as a consequence, they admit discrete balance laws for mass, momentum, angular momentum, energy, vorticity, enstrophy, and helicity. It has been demonstrated in previous work that isogeometric divergence-conforming discretizations are simultaneously more accurate and more stable than classical mixed methods when applied to the direct numerical simulation of incompressible fluid flow. In this chapter, we present two new residual-based large eddy simulation methodologies specifically designed for isogeometric divergence-conforming discretizations. The first methodology arises from a structure-preserving variational multiscale analysis of the incompressible Navier-Stokes equations. The second methodology combines ideas from variational multiscale analysis and large eddy simulation methodologies employing an eddy viscosity, yielding a residual-based eddy viscosity method. We develop quasi-static and dynamic models for both methodologies. Numerical results illustrate the new methodologies yield improved results as compared with standard eddy viscosity based approaches when applied to a transitional flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wall-adapting local eddy viscosity (WALE) model. In ANSYS Fluent Theory Guide.

    Google Scholar 

  2. F. Bashforth and J. C. Adams. Theories of Capillary Action. Cambridge University Press, London, 1883.

    Google Scholar 

  3. Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

    Article  MathSciNet  Google Scholar 

  4. Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.

    Article  MathSciNet  Google Scholar 

  5. Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering, 196:4853–4862, 2007.

    Article  MathSciNet  Google Scholar 

  6. L. Biferale, S. Musacchio, and F. Toschi. Inverse energy cascade in three-dimensional isotropic turbulence. Physical Review Letters, 108:164501, 2012.

    Article  Google Scholar 

  7. M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes. Isogeometric finite element data structures based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering, 87:15–47, 2011.

    Article  MathSciNet  Google Scholar 

  8. M. Brachet, D. Meiron, B. Nickel, and R. Morf. Small-scale structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130:411–452, 1983.

    Article  Google Scholar 

  9. D. Braess and R. Sarazin. An efficient smoother for the Stokes problem. Applied Numerical Mathematics, 23:3–19, 1997.

    Article  MathSciNet  Google Scholar 

  10. A. Buffa, C. de Falco, and R. Vázquez. Isogeometric analysis: Stable elements for the 2D Stokes equation. International Journal for Numerical Methods in Fluids, 65:1407–1422, 2011.

    Article  MathSciNet  Google Scholar 

  11. A. Buffa, J. Rivas, G. Sangalli, and R. Vázquez. Isogeometric discrete differential forms in three dimensions. SIAM Journal on Numerical Analysis, 49:818–844, 2011.

    Article  MathSciNet  Google Scholar 

  12. J.-P. Chollet and M. Lesieur. Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. Journal of the Atmospheric Sciences, 38:2747–2757, 1981.

    Article  Google Scholar 

  13. R. Codina, J. Principe, O. Guasch, and S. Badia. Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 196:2413–2430, 2007.

    Article  MathSciNet  Google Scholar 

  14. C. Coley. Residual-based large eddy simulation of turbulent flows using divergence-conforming discretizations. PhD thesis, University of Colorado Boulder, 2017.

    Google Scholar 

  15. C. Coley, J. Benzaken, and J. A. Evans. A geometric multigrid method for isogeometric compatible discretizations of the generalized Stokes and Oseen problems. Numerical Linear Algebra with Applications, 25:e2145, 2018.

    Article  MathSciNet  Google Scholar 

  16. C. Coley and J.A. Evans. Variational multiscale modeling with discontinuous subscales: Analysis and application to scalar transport. Meccanica, 53:1241–1269, 2018.

    Article  MathSciNet  Google Scholar 

  17. J. A. Cottrell. Isogeometric analysis and numerical modeling of the fine scales within the variational multiscale method. PhD thesis, University of Texas at Austin, 2007.

    Google Scholar 

  18. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing, 1st edition, 2009.

    Google Scholar 

  19. J. A. Evans. Divergence-free B-spline discretizations for viscous incompressible flows. PhD thesis, The University of Texas at Austin, 2011.

    Google Scholar 

  20. J. A. Evans and T. J. R. Hughes. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem. Computational Mechanics, pages 1–8, 2012.

    Google Scholar 

  21. J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the Darcy–Stokes–Brinkman equations. Mathematical Models and Methods in Applied Sciences, 23:671–741, 2013.

    Article  MathSciNet  Google Scholar 

  22. J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Mathematical Models and Methods in Applied Sciences, 23:1421–1478, 2013.

    Article  MathSciNet  Google Scholar 

  23. J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Journal of Computational Physics, 241:141–167, 2013.

    Article  MathSciNet  Google Scholar 

  24. J. A. Evans and T. J. R. Hughes. Isogeometric compatible discretizations for viscous incompressible flow. In IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs, pages 155–193. Springer, 2016.

    Google Scholar 

  25. R.S. Falk and M. Neilan. Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM Journal on Numerical Analysis, 51:1308–1326, 2013.

    Article  MathSciNet  Google Scholar 

  26. D. Fauconnier. Development of a dynamic finite difference method for large-eddy simulation. PhD thesis, Ghent University, 2008.

    Google Scholar 

  27. F. Gaspar, Y. Notay, C. Oosterlee, and C. Rodrigo. A simple and efficient segregated smoother for the discrete Stokes equations. SIAM Journal on Scientific Computing, 36:A1187–A1206, 2014.

    Article  MathSciNet  Google Scholar 

  28. M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 3:1760–1765, 1991.

    Article  Google Scholar 

  29. I. Harari and T.J.R. Hughes. What are C and h?: Inequalities for the analysis and design of finite element methods. Computer Methods in Applied Mechanics and Engineering, 97:157–192, 1992.

    Article  MathSciNet  Google Scholar 

  30. M. C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar, and T. J. R. Hughes. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Computer Methods in Applied Mechanics and Engineering, 199:828–840, 2010.

    Article  MathSciNet  Google Scholar 

  31. T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127:387–401, 1995.

    Article  MathSciNet  Google Scholar 

  32. T. J. R. Hughes, G. R. Feijó, L. Mazzei, and J. B. Quincy. The variational multiscale method–a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.

    Article  MathSciNet  Google Scholar 

  33. T. J. R. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59:85–99, 1986.

    Article  MathSciNet  Google Scholar 

  34. T. J. R. Hughes, L. Mazzei, and K. J. Jansen. Large eddy simulation and the variational multiscale method. Computing and Visualization Science, 3:47–59, 2000.

    Article  Google Scholar 

  35. T. J. R. Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM Journal on Numerical Analysis, 45:539–557, 2007.

    Article  MathSciNet  Google Scholar 

  36. T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and stabilized methods. Encyclopedia of Computational Mechanics Second Edition, pages 1–64, 2018.

    Google Scholar 

  37. J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Proceedings of the Summer Program 1988, 1988.

    Google Scholar 

  38. K. A. Johannessen, M. Kumar, and T. Kvamsdal. Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines. Computer Methods in Applied Mechanics and Engineering, 293:38–70, 2015.

    Article  MathSciNet  Google Scholar 

  39. D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.

    Article  MathSciNet  Google Scholar 

  40. D. K. Lilly. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 123, 1966.

    Google Scholar 

  41. J.-C. Nédélec. Mixed finite elements in \(\mathbb {R}^3\). Numerische Mathematik, 35:315–341, 1980.

    Article  MathSciNet  Google Scholar 

  42. F. Nicoud, H. Baya Toda, O. Cabrit, S. Bose, and J. Lee. Using singular values to build a subgrid-scale model for large eddy simulations. Physics of Fluids, 23, 2011.

    Article  Google Scholar 

  43. F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Turbulence and Combustion, 62:183–200, 1999.

    Article  Google Scholar 

  44. A. A Oberai, J. Liu, D. Sondak, and T. J. R. Hughes. A residual based eddy viscosity model for the large eddy simulation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 282:54–70, 2014.

    Article  MathSciNet  Google Scholar 

  45. S. B. Pope. Turbulent Flows. IOP Publishing, 2001.

    Google Scholar 

  46. P. Raviart and J. Thomas. A mixed finite element method for second order elliptic problems. Mathematical aspects of finite element methods, pages 292–315, 1977.

    Google Scholar 

  47. A. F. Sarmiento, A. M. A. Cortes, D. A. Garcia, L. Dalcin, N. Collier, and V. M. Calo. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal of Computational Science, 18:117–131, 2017.

    Article  Google Scholar 

  48. P. W. Schroeder and G. Lube. Pressure-robust analysis of divergence-free and conforming fem for evolutionary incompressible navier–stokes flows. Journal of Numerical Mathematics, 2017.

    Google Scholar 

  49. F. Shakib, T. J. R Hughes, and Z. Johan. A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 89:141–219, 1991.

    Article  MathSciNet  Google Scholar 

  50. T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed from element matrices and vectors. Computer Methods in Applied Mechanics and Engineering, 190:411–430, 2000.

    Article  Google Scholar 

  51. T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal, and Y. Bazilevs. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering, 316:859–879, 2017.

    Article  MathSciNet  Google Scholar 

  52. W. van Rees, A. Leonard, D. Pullin, and P. Koumoutsakos. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. Journal of Computational Physics, 230:2794–2805, 2011.

    Article  MathSciNet  Google Scholar 

  53. S. P. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables. Journal of Computational Physics, 65:138–158, 1986.

    Article  MathSciNet  Google Scholar 

  54. P. Vignal, A. Sarmiento, A. M. A. Côrtes, L. Dalcin, and V. M. Calo. Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration. Procedia Computer Science, 51:934–943, 2015.

    Article  Google Scholar 

  55. A. W. Vreman. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16:3670–3681, 2004.

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Grant No. FA9550-14-1-0113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evans, J.A., Coley, C., Aronson, R.M., Wetterer-Nelson, C.L., Bazilevs, Y. (2018). Residual-Based Large Eddy Simulation with Isogeometric Divergence-Conforming Discretizations. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_3

Download citation

Publish with us

Policies and ethics