Skip to main content

The Molecular Structure of the Endothelial Glycocalyx Layer (EGL) and Surface Layers (ESL) Modulation of Transvascular Exchange

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

There has been rapid progress over the past decade to extend the concept that a quasiperiodic inner endothelial glycocalyx layer (EGL, <300 nm thick, with key components associated with the endothelial cell membrane) forms the primary molecular filter between circulating blood and the body tissues. The EGL is common to both continuous and fenestrated microvessels. The revised Starling Principle describing steady-state fluid exchange across the EGL describes new ways to understand transvascular exchange of water and plasma proteins in microvessels in both normal and disturbed states such as hemorrhage and fluid replacement during surgery. At the same time, direct optical observations describe endothelial surface layers (ESLs) with porous outer layers that extend 1–2 μm beyond the EGL. Preliminary analyses of water and plasma protein transport through barriers formed by a thick ESL in series with the EGL indicate that such two-layer structures can have permeability properties that are not consistent with measured water and plasma exchange in microvessels. Such multilayer models provide a basis for future detailed evaluations of both transports across endothelial surface layers and the methods to image components of both the EGL and the ESL. Furthermore changes in the thickness and distribution of thick ESLs in vessels with diameters larger than 50 μm may not reflect functional changes in the inner glycocalyx layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson RH, Curry FE (1982) Water flow through a fiber matrix of hyaluronic acid. Microvasc Res 23:239

    Article  Google Scholar 

  • Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing fi ltration across non-fenestrated rat microvessels. J Physiol 557:889–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamson RH, Clark JF, Radeva M, Kheirolomoom A, Ferrara KW, Curry FE (2014) Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. Am J Physiol Heart Circ Physiol 306:H1011–H1017

    Article  Google Scholar 

  • Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J et al (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101:1046–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K, Rostgaard J et al (2012) 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19:343–351

    Article  PubMed  Google Scholar 

  • Bai K, Wang W (2012) Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface 9:2290–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai K, Wang W (2014) Shear stress-induced redistribution of the glycocalyx on endothelial cells in vitro. Biomech Model Mechanobiol 13:303–311

    Article  PubMed  Google Scholar 

  • Bert JL, Bowen BD, Reed RK (1988) Microvascular exchange and interstitial volume regulation in the rat: model validation. Am J Phys 254:H384–H399

    CAS  Google Scholar 

  • Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ (2017) Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol (London) 595:5015–5035

    Article  CAS  Google Scholar 

  • Bhalla G, Deen WM (2009) Effects of charge on osmotic reflection coefficients of macromolecules in fibrous membranes. Biophys J 97:1595–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HI, Granger HG, Taylor AE (1976) Interaction of capillary, interstitial and lymphatic forces in the canine hind paw. Circ Res 39:245–254

    Article  CAS  PubMed  Google Scholar 

  • Curry FE (1984) Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds) Handbook of physiology: microcirculation. American Physiological Society., Section 2, Vol. IV, Part 1, pp 309–374

    Google Scholar 

  • Curry FE (2017) Layer upon layer: the functional consequences of disrupting the glycocalyx-endothelial barrier in vivo and in vitro. Cardiovasc Res 113:559–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Curry FE, Adamson RH (2012) Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 40:828–839

    Article  CAS  PubMed  Google Scholar 

  • Curry FE, Clark JF, Adamson RH (2012) Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. Am J Physiol Heart Circ Physiol 303:H825–H834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curry FE, Arkill KP, Michel CC (2016) The functions of endothelial glycocalyx and their effects on patient’s outcomes during the perioperative period. A review of current methods to evaluate structure-function relations in the glycocalyx in both basic research and clinical settings. In: Farag E, Kunz A (eds) Perioperative fluid management, Chapter 3. Springer, Cham, pp 75–116

    Chapter  Google Scholar 

  • Damiano ER, Stace TM (2002) A mechano-electrochemical model of radial deformation of the capillary glycocalyx. Biophys J 82:1153–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Phys 258:H647–H654

    CAS  Google Scholar 

  • Feng J, Weinbaum S (2000) Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J Fluid Mech 422:281–317

    Article  CAS  Google Scholar 

  • Fridén V, Oveland E, Tenstad O, Ebefors K, Nyström J, Nilsson UA, Haraldsson B (2011) The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int 79:1322–1330

    Article  PubMed  Google Scholar 

  • Gao L, Lipowsky HH (2010) Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc Res 80:394–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyton AC, Taylor AE, Brace RA (1976) A synthesis of interstitial fluid regulation and lymph formation. Fed Proc (8):1881–1885

    Google Scholar 

  • Hegermann J, Lunsdorf H, Ochs M, Haller H (2016) Visualization of the glomerular endothelial glycocalyx by electron microscopy using cationic colloidal thorium dioxide. Histochem Cell Biol 145:41–51

    Article  CAS  PubMed  Google Scholar 

  • Jabaley C, Dudaryk R (2014) Fluid resuscitation for trauma patients: crystalloids versus colloids. Curr Anesthesiol Rep 4:216–224

    Article  Google Scholar 

  • Kedem O, Katchalsky A (1963) Permeability of composite membranes. Trans Faraday Soc 59:1931–1953

    Article  Google Scholar 

  • Landis EM (1927) Microinjection studies of capillary permeability. II. The relation between capillary pressure and the rate of which fluid passes through the walls of single capillaries. Am J Phys 82:217–238

    Google Scholar 

  • Landis EM, Pappenheimer JR (1963) Exchange of substances through the capillary walls, Chap. 29. In: Hamilton WF, Dow P (eds) Handbook of physiology, sect. 2, vol. 2. Circulation. Washington, DC: American Physiological Society, pp 961–1034

    Google Scholar 

  • Levick JR (1991) Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol 76:825–857

    Article  CAS  PubMed  Google Scholar 

  • Levick JR (1994) An analysis of the interaction between interstitial plasma protein, interstitial flow, and fenestral filtration and its application to synovium. Microvasc Res 47:90–125

    Article  CAS  PubMed  Google Scholar 

  • Levick JR, McDonald JN (1994) Viscous and osmotically mediated changes in fluid movement across synovium in response to intraarticular albumin. Microvasc Res 47:68–89

    Article  CAS  PubMed  Google Scholar 

  • Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised starling principle. Cardiovasc Res 87:198–210

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky HH, Lescanic A (2017) Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc Res 112:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CC (1984) Fluid movements through capillary walls. In: Renkin EM, Michel CC (eds) Handbook of physiology. The cardiovascular system, vol. 4, microcirculation, part 1. Bethesda: American Physiological Society, pp 375–409

    Google Scholar 

  • Michel CC (1988) Capillary permeability and how it may change. J Physiol 404:1–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CC (1997) Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol 82(1):1–30

    Article  CAS  PubMed  Google Scholar 

  • Michel CC, Curry FR (2009) Glycocalyx volume: a critical review of tracer dilution methods for its measurement. Microcirculation 16:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CC, Phillips ME (1987) Steady-state fluid filtration at different capillary pressures in perfused frog mesenteric capillaries. J Physiol 388:421–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CC, Mason JC, Curry FE, Tooke JE, Hunter PJ (1974) A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci 59:283–309

    CAS  PubMed  Google Scholar 

  • Michel CC, Phillips ME, Turner MR (1985) The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. J Physiol 360:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CC, Arkill KP, Curry FE (2016) The revised Starling principle and its relevance to peri-operative fluid management. In: Farag E, Kunz A (eds) Perioperative fluid management springer (Cham, Switzerland) Chapter 2, pp 31–74

    Chapter  Google Scholar 

  • Ogston AG, Preston BN, Wells JD (1973) On the transport of compact particles through solutions of chain-polymers. Proc R, Soc London Ser A 333:297–316

    Article  CAS  Google Scholar 

  • Pang Z, Tarbell JM (2003) In vitro study of Starling's hypothesis in a cultured monolayer of bovine aortic endothelial cells. J Vasc Res 40:351–358

    Article  CAS  PubMed  Google Scholar 

  • Pappenheimer JR, Soto-Rivera A (1948) Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hind limbs of cats and dogs. Am J Physiol 152:471–491

    CAS  PubMed  Google Scholar 

  • Preston BN, Davies M, Ogston AG (1965) The composition and physicochemical properties of hyaluronic acids prepared from ox synovial fluid and from a case of mesothelioma. Biochem J 96:449–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renkin EM (1986) Some consequences of capillary permeability to macromolecules; Starling’s hypothesis reconsidered. Am J Phys 250:H706–H710

    CAS  Google Scholar 

  • Rostgaard J, Qvortrup K (1997) Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res 53:1–13

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EP, Li G, Li L, Fu L, Yang Y, Overdier KH et al (2014) The circulating glycosaminoglycan signature of respiratory failure in critically ill adults. J Biol Chem 289:8194–8202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secomb TW, Hsu R, Pries AR (2001) Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol Heart Circ Physiol 281:H629–H636

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C (2001) Quasi-periodic substructure in themicrovessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–355

    Article  CAS  PubMed  Google Scholar 

  • Tarbell JM, Shi ZD, Dunn J, Jo H (2014a) Fluid mechanics, arterial disease, and gene expression. Annu Rev Fluid Mech 46:591–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM, Simon SI, Curry FR (2014b) Mechanosensing at the vascular interface. Annu Rev Biomed Eng 16:505–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Teeffelen JW, Brands J, Stroes ES, Vink H (2007) Endothelial glycocalyx: sweet shield of bloodvessels. Trends Cardiovasc Med 17:101–105

    Article  PubMed  Google Scholar 

  • Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278:H285–289

    Article  Google Scholar 

  • Weinbaum S (1998) Distinguished Lecture Models to solve the mysteries of biomechanics at cellular level. A new view of fiber-matrix layers. Ann Biomed Eng 26:627–643

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC (2003) Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A 100:7988–7995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Woodcock TE, Woodcock TM (2012) Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 108:384–394

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Ebong EE, Fu BM, Tarbell JM (2012) The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS One 7(8):e43168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Adamson RH, Curry FE (2014) And Tarbell JM Sphingosine-1- phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol 306:H363–H372

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Adamson RH, Curry FE, Weinbaum S (2008) Transient regulation of transport by pericytes in venular microvessels via trapped microdomains. Proc Natl Acad Sci U S A 105:1374–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zeng M, Fan J, Tarbell JM, Curry FE, Fu BM (2016) Sphingosine-1-phosphate maintains normal vascular permeability by preserving endothelial surface Glycocalyx in intact microvessels. Microcirculation 23:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fitz-Roy E. Curry .

Editor information

Editors and Affiliations

Appendix: Estimates of Reflection Coefficient of Series Barrier

Appendix: Estimates of Reflection Coefficient of Series Barrier

The reflection coefficient for a series barrier (σ total) formed by an ESL layer with a reflection coefficient of 0.25 (σ ESL) and an inner glycocalyx layer (σ EGL) with a reflection coefficient of 0.94 is given by the relation:

$$ \begin{array}{lll} {\sigma}_{\mathrm{total}}\kern0.75em &=&{\sigma_{\mathrm{EGL}}}^{\ast }{P}_{\mathrm{ESL}}/\left({P}_{\mathrm{ESL}+}{P}_{\mathrm{EGL}}\right)\nonumber\\ &&+{\sigma_{\mathrm{ESL}}}^{\ast}\left[\right({P}_{\mathrm{EGL}}/\left({P}_{\mathrm{ESL}+}{P}_{\mathrm{EGL}}\right)] \end{array} $$

where P ESL and P EGL are the permeability coefficients of the ESL and EGL, respectively. The relation reduces to σ total = σ EGL when P ESL >> P EGL . The relation can also be written as:

σ total = σ EGL*(P total/(P EGL) + σ ESL *(P total/(P ESL) where 1/P total = 1/P EGL + 1/P ESL (Kedem and Katchalsky 1963).

The relative permeability coefficients are determine by the values of (D ϕ)/L for each layer where D is the diffusion coefficient, ϕ is the partition coefficient, and L is the thickness for each layer. Ogston et al. (1973) measured the fractional reduction in the free diffusion coefficient for albumin in HA solution of 14.5 mg/mL to be 0.75, close to two times larger the estimate for D in the inner matrix in the model in Fig. 2b (Adamson et al. 2004). The partition coefficient for album in the same HA is 0.5, while that in the inner matrix is close to 0.03 (reflection coefficient of 0.94). Thus if the ESL is ten times the thickness of the inner glycocalyx as in Fig. 6, the inner glycocalyx matrix accounts for close to 75% of the total diffusive resistance, and the effective reflection coefficient of the series barrier would be 0.78 which is 20% less than the value of the inner glycocalyx barrier 0.94.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curry, FR.E. (2018). The Molecular Structure of the Endothelial Glycocalyx Layer (EGL) and Surface Layers (ESL) Modulation of Transvascular Exchange. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_2

Download citation

Publish with us

Policies and ethics