Skip to main content

Rotation-Based Multi-Particle Collision Algorithm with Hooke–Jeeves Approach Applied to the Structural Damage Identification

  • Chapter
  • First Online:
Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering

Abstract

A hybrid metaheuristic combining the Multi-Particle Collision Algorithm (MPCA) with the Hooke–Jeeves (HJ) method is applied to identify structural damage. A new version of the MPCA is formulated with the rotation-based learning mechanism to the exploration search. The inverse problem of damage identification is formulated as an optimization problem assuming the displacement time history as experimental data. The objective function is the square difference between the measured displacement and the displacement calculated by the forward model. The approach was tested on a cantilevered beam structure. Time-invariant damages were assumed to generate the synthetic displacement data. Noiseless and noisy data were considered. Finite element method was used for solving the direct problem. The comparison with standard MPCA-HJ and the new version of the hybrid method are reported. The use of these hybrid algorithms allows to obtain good estimations using a full set of data, or using a reduced dataset with a low level of noise in data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arafa, M., Youssef, A., Nassef, A.: A modified continuous reactive tabu search for damage detection in beams. In: 36th Design Automation Conference, Parts A and B, vol. 1, pp. 1161–1169. ASME (2010). https://doi.org/10.1115/DETC2010-28389

  2. Blum, C., Puchinger, J., Raidl, G., Roli, A.: A brief survey on hybrid metaheuristics. In: 4th International Conference on Bioinspired Optimization Methods and Their Applications, pp. 3–16 (2010)

    MATH  Google Scholar 

  3. Boonlong, K.: Vibration-based damage detection in beams by cooperative coevolutionary genetic algorithm. Adv. Mech. Eng. 6, 1–13 (2014). https://doi.org/10.1155/2014/624949

    Article  Google Scholar 

  4. Borges, C.C.H., Barbosa, H.J.C., Lemonge, A.C.C.: A structural damage identification method based on genetic algorithm and vibrational data. Int. J. Numer. Methods Eng. 69(13), 2663–2686 (2007). https://doi.org/10.1002/nme

    Article  Google Scholar 

  5. Braun, C.E., Chiwiacowsky, L.D., Gomez, A.T.: Variations of ant colony optimization for the solution of the structural damage identification problem. Proc. Comput. Sci. 51, 875–884 (2015). https://doi.org/10.1016/j.procs.2015.05.218

    Article  Google Scholar 

  6. Campos Velho, H.F., Chiwiacowsky, L.D., Sambatti, S.B.: Structural damage identification by a hybrid approach: variational method associated with parallel epidemic genetic algorithm. Scientia Interdiscip. Stud. Comput. Sci. 17(1), 10–18 (2006)

    Google Scholar 

  7. Chen, Z., Yu, L.: An improved PSO-NM algorithm for structural damage detection. In: Advances in Swarm and Computational Intelligence, pp. 124–132. Springer (2015). https://doi.org/10.1007/978-3-319-20466-6_14

    Chapter  Google Scholar 

  8. Chiwiacowsky, L.D., Campos Velho, H.F., Gasbarri, P.: A variational approach for solving an inverse vibration problem. Inverse Prob. Sci. Eng. 14(5), 557–577 (2006). https://doi.org/10.1080/17415970600574237

    Article  Google Scholar 

  9. Chou, J.H., Ghaboussi, J.: Genetic algorithm in structural damage detection. Comput. Struct. 79(14), 1335–1353 (2001). https://doi.org/10.1016/S0045-7949(01)00027-X

    Article  Google Scholar 

  10. Ergezer, M., Simon, D., Du, D.: Oppositional biogeography-based optimization. In: IEEE International Conference on Systems, Man and Cybernetics, 2009, pp. 1009–1014. IEEE, New York (2009)

    Google Scholar 

  11. Fritzen, C.P., Kraemer, P.: Self-diagnosis of smart structures based on dynamical properties. Mech. Syst. Signal Process. 23(6), 1830–1845 (2009). https://doi.org/10.1016/j.ymssp.2009.01.006

    Article  Google Scholar 

  12. Fu, Y.M., Yu, L.: A DE-based algorithm for structural damage detection. Adv. Mater. Res. 919, 303–307 (2014). https://doi.org/10.4028/www.scientific.net/AMR.919-921.303

    Article  Google Scholar 

  13. Gomes, H.M., Silva, N.R.S.: Some comparisons for damage detection on structures using genetic algorithms and modal sensitivity method. Appl. Math. Model. 32(11), 2216–2232 (2008). https://doi.org/10.1016/j.apm.2007.07.002

    Article  Google Scholar 

  14. He, R.S., Hwang, S.F.: Damage detection by an adaptive real-parameter simulated annealing genetic algorithm. Comput. Struct. 84(31–32), 2231–2243 (2006). https://doi.org/10.1016/j.compstruc.2006.08.031

    Article  Google Scholar 

  15. Hernández, R., Scarabello, M.C., Campos Velho, H.F., Chiwiacowsky, L.D., Soterroni, A.C., Ramos, F.M.: A hybrid method using q-gradient to identify structural damages. In: Dumont, N.A. (ed.) Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro (2015)

    Google Scholar 

  16. Hernández, R., Chiwiacowsky, L.D., Campos Velho, H.F.: Multi-particle collision algorithm with Hooke-Jeeves for solving a structural damage detection problem. In: Araújo, A.L., Correia, J.R., Soares, C.M.M. (eds.) 10th International Conference on Composite Science and Technology, Lisbon (2015)

    Google Scholar 

  17. Hooke, R., Jeeves, T.A.: “Direct Search” solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  Google Scholar 

  18. Kokot, S., Zembaty, Z.: Damage reconstruction of 3d frames using genetic algorithms with Levenberg–Marquardt local search. Soil Dyn. Earthq. Eng. 29(2), 311–323 (2009). https://doi.org/10.1016/j.soildyn.2008.03.001

    Article  Google Scholar 

  19. Kourehli, S.S., Bagheri, A., Amiri, G.G., Ghafory-Ashtiany, M.: Structural damage detection using incomplete modal data and incomplete static response. KSCE J. Civil Eng. 17(1), 216–223 (2013). https://doi.org/10.1007/s12205-012-1864-2

    Article  Google Scholar 

  20. Liu, H., Wu, Z., Li, H., Wang, H., Rahnamayan, S., Deng, C.: PRICAI2014: trends in artificial intelligence. In: 13th Pacific Rim International Conference on Artificial Intelligence. Rotation-Based Learning: A Novel Extension of Opposition-Based Learning, pp. 511–522. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-13560-1_41

    Google Scholar 

  21. Majumdar, A., Maiti, D.K., Maity, D.: Damage assessment of truss structures from changes in natural frequencies using ant colony optimization. Appl. Math. Comput. 218(19), 9759–9772 (2012). https://doi.org/10.1016/j.amc.2012.03.031

    MATH  Google Scholar 

  22. Mares, C., Surace, C.: An application of genetic algorithms to identify damage in elastic structures. J. Sound Vib. 195(2), 195–215 (1996). https://doi.org/10.1006/jsvi.1996.0416

    Article  Google Scholar 

  23. Mohan, S., Maiti, D., Maity, D.: Structural damage assessment using FRF employing particle swarm optimization. Appl. Math. Comput. 219(20), 10387–10400 (2013). https://doi.org/10.1016/j.amc.2013.04.016

    MathSciNet  MATH  Google Scholar 

  24. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Google Scholar 

  25. Nichols, J.M., Murphy, K.D.: Modeling and Estimation of Structural Damage. Wiley, New York (2016)

    Book  Google Scholar 

  26. Ooijevaar, T.H.: Vibration based structural health monitoring of composite skin-stiffener structures. Ph.D. thesis, University of Twente (2014)

    Google Scholar 

  27. Pawar, P.M., Ganguli, R.: Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades. Mech. Syst. Signal Process. 21(5), 2212–2236 (2007). https://doi.org/10.1016/j.ymssp.2006.09.006

    Article  Google Scholar 

  28. Rahnamayan, S., Tizhoosh, H.R., Salama, M.: Quasi-oppositional differential evolution. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp. 2229–2236. IEEE, New York (2007)

    Google Scholar 

  29. Rytter, A.: Vibrational based inspection of civil engineering structures. Ph.D. thesis, Aalborg University (1993)

    Google Scholar 

  30. Sacco, W.F., Oliveira, C.R.E.: A new stochastic optimization algorithm based on a particle collision metaheuristic. In: Proceedings of 6th WCSMO (2005)

    Google Scholar 

  31. Sandesh, S., Shankar, K.: Application of a hybrid of particle swarm and genetic algorithm for structural damage detection. Inverse Prob. Sci. Eng. 18(7), 997–1021 (2010). https://doi.org/10.1080/17415977.2010.500381

    Article  Google Scholar 

  32. Seyedpoor, S.: A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization. Int. J. Non-Linear Mech. 47(1), 1–8 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.07.011

    Article  MathSciNet  Google Scholar 

  33. Seyedpoor, S.M., Yazdanpanah, O.: Structural damage detection by differential evolution as a global optimization algorithm. Iran. J. Struct. Eng. 1(1), 52–62 (2014)

    Google Scholar 

  34. Seyedpoor, S.M., Shahbandeh, S., Yazdanpanah, O.: An efficient method for structural damage detection using a differential evolution algorithm-based optimisation approach. Civ. Eng. Environ. Syst. 1–21 (2015). https://doi.org/10.1080/10286608.2015.1046051

    Article  Google Scholar 

  35. Tabrizian, Z., Afshari, E., Amiri, G.G., Ali Beigy, M.H., Nejad, S.M.P.: A new damage detection method: big bang-big crunch (BB-BC) algorithm. Shock Vib. 20(4), 633–648 (2013). https://doi.org/10.3233/SAV-130773

    Article  Google Scholar 

  36. Ting, T.O., Yang, X.S., Cheng, S., Huang, K.: Hybrid Metaheuristic algorithms: past, present, and future. In: Yang, X.-S. (ed.) Recent Advances in Swarm Intelligence and Evolutionary Computation. Studies in Computational Intelligence, vol. 585, pp. 71–83. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-13826-8_4

    Google Scholar 

  37. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents. Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 1, pp. 695–701. IEEE, New York (2005). https://doi.org/10.1109/CIMCA.2005.1631345

  38. Tizhoosh, H.R., Ventresca, M.: Oppositional Concepts in Computational Intelligence. Studies in Computational Intelligence. Springer, Berlin (2008)

    Google Scholar 

  39. Worden, K., Dulieu-Barton, J.M.: An overview of intelligent fault detection in systems and structures. Struct. Health Monit. 3(1), 85–98 (2004). https://doi.org/10.1177/1475921704041866

    Article  Google Scholar 

  40. Xu, Q., Wang, L., Wang, N., Hei, X., Zhao, L.: A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell. 29, 1–12 (2014)

    Article  Google Scholar 

  41. Yu, L., Li, C.: A global artificial fish swarm algorithm for structural damage detection. Adv. Struct. Eng. 17(3), 331–346 (2014). https://doi.org/10.1260/1369-4332.17.3.331

    Article  Google Scholar 

  42. Yu, L., Wan, Z.: An improved PSO algorithm and its application to structural damage detection. In: 2008 Fourth International Conference on Natural Computation, vol. 1, pp. 423–427. IEEE (2008). https://doi.org/10.1109/ICNC.2008.224

  43. Yu, L., Xu, P.: Structural health monitoring based on continuous ACO method. Microelectron. Reliab. 51(2), 270–278 (2011). https://doi.org/10.1016/j.microrel.2010.09.011

    Article  Google Scholar 

  44. Yu, L., Xu, P., Chen, X.: A SI-based algorithm for structural damage detection. In: Advances in Swarm Intelligence, pp. 21–28. Springer (2012). https://doi.org/doi:10.1007/978-3-642-30976-2_3

    Google Scholar 

  45. Zembaty, Z., Kokot, S., Bobra, P.: Application of rotation rate sensors in measuring beam flexure and structural health monitoring, pp. 65–76. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-14246-3_6

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Council for Research and Development (CNPq) under grants numbers 159547/2013-0 and 312924/2017-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haroldo Fraga de Campos Velho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres, R.H., de Campos Velho, H.F., Chiwiacowsky, L.D. (2019). Rotation-Based Multi-Particle Collision Algorithm with Hooke–Jeeves Approach Applied to the Structural Damage Identification. In: Platt, G., Yang, XS., Silva Neto, A. (eds) Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96433-1_5

Download citation

Publish with us

Policies and ethics