Skip to main content

Quantum Computing for Training

  • Chapter
  • First Online:
Supervised Learning with Quantum Computers

Part of the book series: Quantum Science and Technology ((QST))

  • 5543 Accesses

Abstract

The previous chapter looked into strategies of implementing inference algorithms on a quantum computer, or how to compute the prediction of a model using a quantum instead of a classical device. This chapter will be concerned with how to optimise models using quantum computers, a subject targeted by a large share of the quantum machine learning literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An assumption that allows us to omit that the bounds also depend on the norm.

  2. 2.

    The initial state plays the role of the uniform superposition that we started with in the original quantum approximate optimisation algorithm. It can be prepared by starting with the state \( \bigotimes \limits _j \sqrt{2 \cosh (\delta ) \sum _{\pm } \mathrm {e}^{\mp \frac{\beta }{2} | \pm \rangle _j | \pm \rangle _{E_j}}}\) and tracing out the \(E_j\) (‘environment’) register (which has as many qubits as the visible register) [26].

References

  1. Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: A Quantum Hopfield Neural Network (2017). arXiv:1710.03599

  2. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  4. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)

    Article  ADS  Google Scholar 

  5. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  6. Zhao, Z., Fitzsimons, J.K., Fitzsimons, J.F.: Quantum Assisted Gaussian Process Regression (2015). arXiv:1512.03929

  7. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 792–809. IEEE (2015)

    Google Scholar 

  8. Wang, G.: Quantum algorithm for Linear Regression. Phys. Rev. A 96, 012335 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  10. Hebb, D.O.: The Organization of Behavior: a Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  11. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015)

    Article  Google Scholar 

  12. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110(25), 250504 (2013)

    Google Scholar 

  13. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)

    Article  Google Scholar 

  14. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2016)

    Article  ADS  Google Scholar 

  15. Kerenedis, I., Prakash, A.: Quantum recommendation systems. In: Kerenidis, I., Prakash, A. (eds.), Quantum Recommendation Systems. LIPIcs-Leibniz International Proceedings in Informatics, vol. 67 (2017)

    Google Scholar 

  16. Wiebe, N., Kapoor, A., Svore, K.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15, 0318–0358 (2015)

    Google Scholar 

  17. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000)

    Article  MathSciNet  Google Scholar 

  19. Dürr, C., Hoyer, P.: A Quantum Algorithm for Finding the Minimum (1996). arXiv:9607014v2

  20. Kapoor, A., Wiebe, N., Svore, K.: Quantum perceptron models. In: Advances in Neural Information Processing Systems, pp. 3999–4007 (2016)

    Google Scholar 

  21. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)

    Article  ADS  Google Scholar 

  22. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., Obrien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (2014)

    Google Scholar 

  23. Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Approximate Optimization Algorithm (2014). arXiv:1411.4028

  24. Farhi, E., Harrow, A.W.: Quantum Supremacy Through the Quantum Approximate Optimization Algorithm (2016). arXiv:1602.07674

  25. Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feed forward neural networks. npj Quantum. Inf. 3(1), 36 (2017)

    Google Scholar 

  26. Verdon, G., Broughton, M., Biamonte, J.: A Quantum Algorithm to Train Neural Networks using Low-Depth Circuits (2017). arXiv:1712.05304

  27. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  28. Spagnolo, N., Maiorino, E., Vitelli, C., Bentivegna, M., Crespi, A., Ramponi, R., Mataloni, P., Osellame, R., Sciarrino, F.: Learning an unknown transformation via a genetic approach. Sci. Rep. 7(1), 14316 (2017)

    Article  ADS  Google Scholar 

  29. Guerreschi, G.G., Smelyanskiy, M.: Practical Optimization for Hybrid Quantum-Classical Algorithms (2017). arXiv:1701.01450

  30. Farhi, E., Neven, H.: Classification with Quantum Neural Networks on Near Term Processors (2018). arXiv:1802.06002

  31. Schuld, M., Bocharov, A., Wiebe, N., Svore, K.: A Circuit-Centric Variational Quantum Classifier (2018). arXiv:1804.00633

  32. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5):3457 (1995)

    Google Scholar 

  33. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum Circuit Learning (2018). arXiv:1803.00745

  34. Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Troels, F.: Rnnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer. Defining and detecting quantum speedup. Science 345, 420–424 (2014)

    Google Scholar 

  36. O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1):163–188 (2015)

    Google Scholar 

  37. Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer i. Mapping to Quadratic Unconstrained Binary Optimization (2008). arXiv:0804.4457

  38. Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12(5), 2027–2070 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Denil, M., De Freitas, N.: Toward the implementation of a quantum RBM. In: NIPS 2011 Deep Learning and Unsupervised Feature Learning Workshop (2011)

    Google Scholar 

  40. Korenkevych, D., Xue, Y., Bian, Z., Chudak, F., Macready, W.G., Rolfe, J., Andriyash, E.: Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines (2016). arXiv:1611.04528

  41. Adachi, S.H., Henderson, M.P.: Application of Quantum Annealing to Training of Deep Neural Networks (2015). arXiv:1510.06356

  42. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94(2), 022308 (2016)

    Article  ADS  Google Scholar 

  43. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8:021050 (2018)

    Google Scholar 

  44. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Quantum-assisted learning of hardware-embedded probabilistic graphical models. Phys. Rev. X 7, 041052 (2017)

    Google Scholar 

  45. Neigovzen, R., Neves, J.L., Sollacher, R., Glaser, S.J.: Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A 79(4):042321 (2009)

    Google Scholar 

  46. Horn, D., Gottlieb, A.: Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88(1), 018702 (2002)

    Article  ADS  Google Scholar 

  47. Cui, Y., Shi, J., Wang, Z.: Lazy quantum clustering induced radial basis function networks (LQC-RBFN) with effective centers selection and radii determination. Neurocomputing 175, 797–807 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2018). Quantum Computing for Training. In: Supervised Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96424-9_7

Download citation

Publish with us

Policies and ethics