Abstract
The previous chapter looked into strategies of implementing inference algorithms on a quantum computer, or how to compute the prediction of a model using a quantum instead of a classical device. This chapter will be concerned with how to optimise models using quantum computers, a subject targeted by a large share of the quantum machine learning literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
An assumption that allows us to omit that the bounds also depend on the norm.
- 2.
The initial state plays the role of the uniform superposition that we started with in the original quantum approximate optimisation algorithm. It can be prepared by starting with the state \( \bigotimes \limits _j \sqrt{2 \cosh (\delta ) \sum _{\pm } \mathrm {e}^{\mp \frac{\beta }{2} | \pm \rangle _j | \pm \rangle _{E_j}}}\) and tracing out the \(E_j\) (‘environment’) register (which has as many qubits as the visible register) [26].
References
Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: A Quantum Hopfield Neural Network (2017). arXiv:1710.03599
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)
Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)
Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)
Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)
Zhao, Z., Fitzsimons, J.K., Fitzsimons, J.F.: Quantum Assisted Gaussian Process Regression (2015). arXiv:1512.03929
Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 792–809. IEEE (2015)
Wang, G.: Quantum algorithm for Linear Regression. Phys. Rev. A 96, 012335 (2017)
Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)
Hebb, D.O.: The Organization of Behavior: a Neuropsychological Theory. Wiley, New York (1949)
Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015)
Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110(25), 250504 (2013)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014)
Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2016)
Kerenedis, I., Prakash, A.: Quantum recommendation systems. In: Kerenidis, I., Prakash, A. (eds.), Quantum Recommendation Systems. LIPIcs-Leibniz International Proceedings in Informatics, vol. 67 (2017)
Wiebe, N., Kapoor, A., Svore, K.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15, 0318–0358 (2015)
Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)
Ventura, D., Martinez, T.: Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000)
Dürr, C., Hoyer, P.: A Quantum Algorithm for Finding the Minimum (1996). arXiv:9607014v2
Kapoor, A., Wiebe, N., Svore, K.: Quantum perceptron models. In: Advances in Neural Information Processing Systems, pp. 3999–4007 (2016)
McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023 (2016)
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., Obrien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (2014)
Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Approximate Optimization Algorithm (2014). arXiv:1411.4028
Farhi, E., Harrow, A.W.: Quantum Supremacy Through the Quantum Approximate Optimization Algorithm (2016). arXiv:1602.07674
Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feed forward neural networks. npj Quantum. Inf. 3(1), 36 (2017)
Verdon, G., Broughton, M., Biamonte, J.: A Quantum Algorithm to Train Neural Networks using Low-Depth Circuits (2017). arXiv:1712.05304
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)
Spagnolo, N., Maiorino, E., Vitelli, C., Bentivegna, M., Crespi, A., Ramponi, R., Mataloni, P., Osellame, R., Sciarrino, F.: Learning an unknown transformation via a genetic approach. Sci. Rep. 7(1), 14316 (2017)
Guerreschi, G.G., Smelyanskiy, M.: Practical Optimization for Hybrid Quantum-Classical Algorithms (2017). arXiv:1701.01450
Farhi, E., Neven, H.: Classification with Quantum Neural Networks on Near Term Processors (2018). arXiv:1802.06002
Schuld, M., Bocharov, A., Wiebe, N., Svore, K.: A Circuit-Centric Variational Quantum Classifier (2018). arXiv:1804.00633
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5):3457 (1995)
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum Circuit Learning (2018). arXiv:1803.00745
Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)
Troels, F.: Rnnow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer. Defining and detecting quantum speedup. Science 345, 420–424 (2014)
O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., Smelyanskiy, V.: Bayesian network structure learning using quantum annealing. Eur. Phys. J. Spec. Top. 224(1):163–188 (2015)
Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer i. Mapping to Quadratic Unconstrained Binary Optimization (2008). arXiv:0804.4457
Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12(5), 2027–2070 (2013)
Denil, M., De Freitas, N.: Toward the implementation of a quantum RBM. In: NIPS 2011 Deep Learning and Unsupervised Feature Learning Workshop (2011)
Korenkevych, D., Xue, Y., Bian, Z., Chudak, F., Macready, W.G., Rolfe, J., Andriyash, E.: Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines (2016). arXiv:1611.04528
Adachi, S.H., Henderson, M.P.: Application of Quantum Annealing to Training of Deep Neural Networks (2015). arXiv:1510.06356
Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94(2), 022308 (2016)
Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8:021050 (2018)
Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Quantum-assisted learning of hardware-embedded probabilistic graphical models. Phys. Rev. X 7, 041052 (2017)
Neigovzen, R., Neves, J.L., Sollacher, R., Glaser, S.J.: Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A 79(4):042321 (2009)
Horn, D., Gottlieb, A.: Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88(1), 018702 (2002)
Cui, Y., Shi, J., Wang, Z.: Lazy quantum clustering induced radial basis function networks (LQC-RBFN) with effective centers selection and radii determination. Neurocomputing 175, 797–807 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Schuld, M., Petruccione, F. (2018). Quantum Computing for Training. In: Supervised Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96424-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-96424-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96423-2
Online ISBN: 978-3-319-96424-9
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)