Skip to main content

Quantum Computing for Inference

  • Chapter
  • First Online:
  • 5131 Accesses

Part of the book series: Quantum Science and Technology ((QST))

Abstract

After the discussion of classical-quantum interfaces, we are now ready to dive into techniques that can bee used to construct quantum machine learning algorithms. As laid out in the introduction, there are two strategies to solve learning task with quantum computers. First, one can try to translate a classical machine learning method into the language of quantum computing. The challenge here is to combine quantum routines in a clever way so that the overall quantum algorithm reproduces the results of the classical model. The second strategy is more exploratory and creates new models that are tailor-made for the working principles of a quantum device. Here, the numerical analysis of the model performance can be much more important than theoretical promises of asymptotic speedups. In the remaining chapters we will look at methods that are useful for both approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Such an angle encoded qubit has been called a quron [10] in the context of quantum neural networks.

  2. 2.

    Thanks to Gian Giacomo Guerreschi for this simplified presentation.

  3. 3.

    The form of Eq. (6.10) is a so called non-parametric model: The number of (potentially zero) parameters \(\nu _m \) grows with the size M of the training set.

  4. 4.

    In fact, the Hilbert space of some quantum systems can easily be constructed as a reproducing kernel Hilbert space [14].

  5. 5.

    Strictly speaking, according to the definition in Eq. (6.8) a feature map maps an input to a function, and not to a vector. However, a quantum state is also called a wave function, and a more general definition of a feature map is a map from \(\mathcal {X}\) to a general Hilbert space. We can therefore overlook this subtlety here and refer to [14] for more details.

  6. 6.

    In statistical physics, a Gibbs distribution is a state of a system that does not change under the evolution of the system.

References

  1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 339–354. The Royal Society (1998)

    Google Scholar 

  2. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur? In: Algorithms and Computation, pp. 189–198. Springer (2003)

    Google Scholar 

  3. Zhao, Z., Fitzsimons, J.K., Fitzsimons, J.F.: Quantum assisted Gaussian process regression (2015). arXiv:1512.03929

  4. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2017)

    Article  ADS  Google Scholar 

  5. Schuld, M., Sinayskiy, I., Petruccione, F.: How to simulate a perceptron using quantum circuits. Phys. Lett. A 379, 660–663 (2015)

    Article  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  7. Tommiska, M.T.: Efficient digital implementation of the sigmoid function for reprogrammable logic. IEE Proc. Comput. Digit. Tech. 150(6), 403–411 (2003)

    Article  Google Scholar 

  8. Quine, V.W.: A way to simplify truth functions. Am. Math. Mon. 62(9), 627–631 (1955)

    Article  MathSciNet  Google Scholar 

  9. McCluskey, J.E.: Minimization of boolean functions. Bell Labs Techn. J. 35(6), 1417–1444 (1956)

    Article  MathSciNet  Google Scholar 

  10. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cao, Y., Guerreschi, G.G., Aspuru-Guzik, A.: Quantum neuron: an elementary building block for machine learning on quantum computers (2017). arXiv:1711.11240

  12. Paetznick, A., Svore, K.M.: Repeat-until-success: non-deterministic decomposition of single-qubit unitaries. Quantum Inf. Comput. 14, 1277–1301 (2013)

    Google Scholar 

  13. Wiebe, N., Kliuchnikov, V.: Floating point representations in quantum circuit synthesis. New J. Phys. 15(9), 093041 (2013)

    Article  ADS  Google Scholar 

  14. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces (2018). arXiv:1803.07128v1

  15. Schölkopf, B., Herbrich, R., Smola, A.: A generalized representer theorem. In: Computational Learning Theory, pp. 416–426. Springer (2001)

    Google Scholar 

  16. Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press (2002)

    Google Scholar 

  17. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  18. Schuld, M., Bocharov, A., Svore, K., Wiebe, N.: Circuit-centric quantum classifiers (2018). arXiv:1804.00633

  19. Stoudenmire, E., Schwab, D.J.: Supervised learning with tensor networks. In: Advances in Neural Information Processing Systems, pp. 4799–4807 (2016)

    Google Scholar 

  20. Chatterjee, R., Ting, Y.: Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Inf. Commun. 17(15&16), 1292 (2017)

    MathSciNet  Google Scholar 

  21. Klauder, J.R., Bo-Sture S.: Coherent States: Applications in Physics and Mathematical Physics. World Scientific (1985)

    Google Scholar 

  22. Trugenberger, C.A.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)

    Google Scholar 

  23. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum Computing for Pattern Classification. Lecture Notes in Computer Science, vol. 8862, pp. 208–220. Springer (2014)

    Google Scholar 

  24. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 119(6), 60002 (2017)

    Article  ADS  Google Scholar 

  25. Yoder, T.J., Low, G.H., Chuang, I.L.: Quantum inference on Bayesian networks. Phys. Rev. A 89, 062315 (2014)

    Google Scholar 

  26. Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans. Comput. Theory (TOCT) 5(3), 11 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Wiebe, N., Kapoor, A., Svore,K.M.: Quantum deep learning (2014). arXiv: 1412.3489v1

  28. Wittek, P., Gogolin, C.: Quantum enhanced inference in markov logic networks. Sci. Rep. 7 (2017)

    Google Scholar 

  29. Brandão, F.G.S.L., Svore, K.M.: Quantum speed-ups for solving semidefinite programs. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 415–426. IEEE (2017)

    Google Scholar 

  30. Poulin, D., Wocjan, P.: Sampling from the thermal quantum gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103(22), 220502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2018). Quantum Computing for Inference. In: Supervised Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96424-9_6

Download citation

Publish with us

Policies and ethics