Skip to main content

Quantum Advantages

  • Chapter
  • First Online:
Supervised Learning with Quantum Computers

Part of the book series: Quantum Science and Technology ((QST))

  • 5126 Accesses

Abstract

Before coming to the design of quantum machine learning algorithms, this chapter is an interlude to discuss how quantum computing can actually assist machine learning. Although quantum computing researchers often focus on asymptotic computational speedups, there is more than one measure of merit when it comes to machine learning. We will discuss three dimensions here, namely the computational complexity, the sample complexityand the model complexity. While the section on computational complexity allows us to establish the terminology already used in previous chapters with more care, the section on sample complexity ventures briefly into quantum extensions of statistical learning theory. The last section on model complexity provides arguments towards what has been called the exploratory approach to quantum machine learning, in which quantum physics is used as a resource to build new types of models altogether.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The three dimensions were first introduced by Peter Wittek and Vedran Dunjko.

  2. 2.

    Applying a quantum Fourier transform effectively changes the distribution from which to sample, which leaves some question whether the comparison to a static ‘classical example generator’ is fair. However, they show that while the quantum example oracle can be simulated by a membership query oracle, this is not true vice versa. It seems therefore that the quantum example oracle ranges somewhere between a query and an example oracle.

References

  1. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  2. Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and Systems Science, pp. 7174–7201. Springer (2009)

    Google Scholar 

  3. Rãnnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345, 420–424 (2014)

    Google Scholar 

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  5. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Google Scholar 

  6. Steiger, D.S., Troyer, M.: Racing in parallel: quantum versus classical. In: Bulletin of the American Physical Society, vol. 61 (2016)

    Google Scholar 

  7. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer Science & Business Media (2011)

    Google Scholar 

  8. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a large scale classifier with the quantum adiabatic algorithm. arXiv:0912.0779 (2009)

  9. Amin, M.H.: Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A 92(5), 1–6 (2015)

    Article  Google Scholar 

  10. Vapnik, V.N., Vapnik, V.: Statistical learning theory, vol. 1. Wiley, New York (1998)

    Google Scholar 

  11. Arunachalam, S., de Wolf, R.: Guest column: a survey of quantum learning theory. ACM SIGACT News 48(2), 41–67 (2017)

    Article  MathSciNet  Google Scholar 

  12. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Google Scholar 

  14. Rocco, A.S., Gortler, S.J.: Equivalences and separations between quantum and classical learnability. SIAM J. Comput. 33(5), 1067–1092 (2004)

    Google Scholar 

  15. Hunziker, M., Meyer, D.A., Park, J., Pommersheim, J., Rothstein, M.: The geometry of quantum learning. Quant. Inf. Process. 9(3), 321–341 (2010)

    Google Scholar 

  16. Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of Boolean oracles. In: Annual Symposium on Theoretical Aspects of Computer Science, pp. 105–116. Springer (2004)

    Google Scholar 

  17. Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quant. Inf. Process. 4(5), 355–386 (2005)

    Google Scholar 

  18. Kothari, R.: An optimal quantum algorithm for the oracle identification problem. In: Proceedings of the 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), Leibniz International Proceedings in Informatics, vol. 25, pp. 482–493 (2014)

    Google Scholar 

  19. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM (JACM) 36(4), 929–965 (1989)

    Google Scholar 

  20. Hanneke, S.: The optimal sample complexity of PAC learning. J. Mach. Learn. Res. 17(38), 1–15 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Bshouty, N.H., Jackson, J.C.: Learning DNF over the uniform distribution using a quantum example oracle. SIAM J. Comput. 28(3), 1136–1153 (1998)

    Google Scholar 

  22. Arunachalam, S., de Wolf, R.: Optimal quantum sample complexity of learning algorithms. arXiv:1607.00932 (2016)

  23. Cross, A.W., Smith, G., Smolin, J.A.: Quantum learning robust against noise. Phys. Rev. A 92(1), 012327 (2015)

    Google Scholar 

  24. Schölkopf, B., Herbrich, R., Smola, A.: A generalized representer theorem. In: Computational Learning Theory, pp. 416–426. Springer (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Schuld .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuld, M., Petruccione, F. (2018). Quantum Advantages. In: Supervised Learning with Quantum Computers. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-96424-9_4

Download citation

Publish with us

Policies and ethics