IntegerSequences: A Package for Computing with k-Regular Sequences

  • Eric RowlandEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


IntegerSequences is a Mathematica package for computing with integer sequences. Its support for k-regular sequences includes basic closure properties, guessing recurrences, and computing automata. Recent applications have included establishing the structure of extremal a / b-power-free words, obtaining a product formula for the generating function enumerating binomial coefficients by their p-adic valuations, and proving congruences for combinatorial sequences modulo prime powers.


Integer sequences Regular sequences Automatic sequences 


  1. 1.
    Allouche, J.-P., Shallit, J.: The ring of \(k\)-regular sequences. Theoret. Comput. Sci. 98, 163–197 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Charlier, É., Rampersad, N., Shallit, J.: Enumeration and decidable properties of automatic sequences. Int. J. Found. Comput. Sci. 23, 1035–1066 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Christol, G., Kamae, T., Mendès France, M., Rauzy, G.: Suites algébriques, automates et substitutions. Bulletin de la Société Mathématique de France 108, 401–419 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Eu, S.-P., Liu, S.-C., Yeh, Y.-N.: Catalan and Motzkin numbers modulo 4 and 8. Eur. J. Comb. 29, 1449–1466 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fine, N.: Binomial coefficients modulo a prime. Amer. Math. Monthly 54, 589–592 (1947)MathSciNetCrossRefGoogle Scholar
  6. 6.
    The On-Line Encyclopedia of Integer Sequences.
  7. 7.
    Parreau, A., Rigo, M., Rowland, E., Vandomme, É.: A new approach to the 2-regularity of the \(\ell \)-abelian complexity of 2-automatic sequences. Electron. J. Comb. 22 (2015) #P1.27Google Scholar
  8. 8.
    Pudwell, L., Rowland, E.: Avoiding fractional powers over the natural numbers. Electron. J. Comb. 25 (2018) #P2.27Google Scholar
  9. 9.
  10. 10.
    Rowland, E.: A matrix generalization of a theorem of Fine. Integers 18A, A18 (2018)MathSciNetGoogle Scholar
  11. 11.
    Rowland, E., Shallit, J.: Avoiding 3/2-powers over the natural numbers. Discrete Math. 312, 1282–1288 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rowland, E., Yassawi, R.: Automatic congruences for diagonals of rational functions. Journal de Théorie des Nombres de Bordeaux 27, 245–288 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rowland, E., Zeilberger, D.: A case study in meta-automation: automatic generation of congruence automata for combinatorial sequences. J. Differ. Equ. Appl. 20, 973–988 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shallit, J.: Remarks on inferring integer sequences.
  15. 15.
    Spiegelhofer, L., Wallner, M.: An explicit generating function arising in counting binomial coefficients divisible by powers of primes. Acta Arithmetica 181, 27–55 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsHofstra UniversityHempsteadUSA

Personalised recommendations