Skip to main content

Solving the Likelihood Equations to Compute Euler Obstruction Functions

  • Conference paper
  • First Online:
  • 1091 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10931))

Abstract

Macpherson defined Chern-Schwartz-Macpherson classes by introducing the (local) Euler obstruction function, which is an integer valued function on the variety that is constant on each stratum of a Whitney stratification. By understanding the Euler obstruction, one gains insights about a singular algebraic variety. It was recently shown by the author and B. Wang, how to compute these functions using maximum likelihood degrees. This paper discusses a symbolic and a numerical implementation of algorithms to compute the Euler obstruction at a point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The author is thankful for the helpful comments of Botong Wang and Xiping Zhang.

References

  1. Allgower, E.L., Georg, K.: Continuation and path following. In: Acta Numerica 1993, pages 1–64. Cambridge University Press, Cambridge (1993)

    Article  MathSciNet  Google Scholar 

  2. Bates, D.J., Gross, E., Leykin, A., Rodriguez, J.I.: Bertini for Macaulay2. Preprint arXiv:1310.3297 (2013)

  3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry. https://bertini.nd.edu/

  4. Brasselet, J.-P., Trang, L.D., Seade, J.: Euler obstruction and indices of vector fields. Topology 39(6), 1193–1208 (2000)

    Article  MathSciNet  Google Scholar 

  5. Catanese, F., Hoşten, S., Khetan, A., Sturmfels, B.: The maximum likelihood degree. Amer. J. Math. 128(3), 671–697 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004). https://doi.org/10.1007/978-3-642-18868-8

    Book  MATH  Google Scholar 

  7. Franecki, J., Kapranov, M.: The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties. Duke Math. J. 104(1), 171–180 (2000)

    Article  MathSciNet  Google Scholar 

  8. Gaffney, T., Grulha, Jr., N.G., Ruas, M.A.S.: The local Euler obstruction and topology of the stabilization of associated determinantal varieties. Preprint arXiv:1611.00749 (2017)

  9. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  10. Gross, E., Drton, M., Petrović, S.: Maximum likelihood degree of variance component models. Electron. J. Stat. 6, 993–1016 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gross, E., Rodriguez, J.I.: Maximum likelihood geometry in the presence of data zeros. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC 2014, pp. 232–239. ACM, New York (2014)

    Google Scholar 

  12. Hauenstein, J.D., Rodriguez, J.I., Sturmfels, B.: Maximum likelihood for matrices with rank constraints. J. Algebr. Stat. 5(1), 18–38 (2014)

    Article  MathSciNet  Google Scholar 

  13. Horobet, E., Rodriguez, J.I.: The maximum likelihood data singular locus. J. Symbolic Comput. 79(part 1), 99–107 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hoşten, S., Khetan, A., Sturmfels, B.: Solving the likelihood equations. Found. Comput. Math. 5(4), 389–407 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hoşten, S., Sullivant, S.: The algebraic complexity of maximum likelihood estimation for bivariate missing data. In: Gibilisco, P., Riccomagno, E., Rogantin, M.P., Wynn, H.P. (eds.) Algebraic and Geometric Methods in Statistics, pp. 123–134. Cambridge Books Online, Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  16. Huh, J.: The maximum likelihood degree of a very affine variety. Compos. Math. 149(8), 1245–1266 (2013)

    Article  MathSciNet  Google Scholar 

  17. Huh, J., Sturmfels, B.: Likelihood geometry. In: Di Rocco, S., Sturmfels, B. (eds.) Combinatorial Algebraic Geometry. LNM, vol. 2108, pp. 63–117. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04870-3_3

    Chapter  MATH  Google Scholar 

  18. Kubjas, K., Robeva, E., Sturmfels, B.: Fixed points of the EM algorithm and nonnegative rank boundaries. Ann. Statist. 43(1), 422–461 (2015)

    Article  MathSciNet  Google Scholar 

  19. MacPherson, R.D.: Chern classes for singular algebraic varieties. Ann. Math. 2(100), 423–432 (1974)

    Article  MathSciNet  Google Scholar 

  20. Rodriguez, J.I., Wang, B.: Computing Euler obstruction functions using maximum likelihood degrees. Arxiv:1710.04310 (2017)

  21. Sommese, A.J., Wampler, II, C.W.: The Numerical Solution of Systems of Polynomials: Arising in Engineering and Science. World Scientific Publishing Co., Pte. Ltd., Hackensack (2005)

    Google Scholar 

  22. Uhler, C.: Geometry of maximum likelihood estimation in Gaussian graphical models. Ann. Stat. 40(1), 238–261 (2012)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X.: Local Euler Obstruction and Chern-Mather classes of Determinantal Varieties. Preprint arXiv:1706.02032 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Israel Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodriguez, J.I. (2018). Solving the Likelihood Equations to Compute Euler Obstruction Functions. In: Davenport, J., Kauers, M., Labahn, G., Urban, J. (eds) Mathematical Software – ICMS 2018. ICMS 2018. Lecture Notes in Computer Science(), vol 10931. Springer, Cham. https://doi.org/10.1007/978-3-319-96418-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96418-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96417-1

  • Online ISBN: 978-3-319-96418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics