Solving Polynomial Systems Using Numeric Gröbner Bases

  • Daniel LichtblauEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


Systems of polynomial or algebraic equations with finitely many solutions arise in many areas of applied mathematics. I will discuss the design and implementation of a hybrid symbolic-numeric method based on the endomorphism matrix approach pioneered by Stetter and others. It makes use of numeric Gröbner bases and arbitrary-precision eigensystem computations. I will describe how to assess accuracy, find and remove parasite solutions in the case of fractional degrees in the system, handle multiplicity, as well as some of the other finer points not usually covered in the literature. This work is one of the methods used in the Wolfram Language NSolve function.


Polynomial systems Numeric Gröbner bases Endomorphism matrix Eigensystem 


  1. 1.
    Auzinger, W., Stetter, H.: An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. Int. Ser. Numer. Math. 86, 11–31 (1988)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bodrato, M., Zanoni, A.: A numerical Gröbner bases and syzygies: an interval approach. In: Proceedings of the 6th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2004), pp. 77–89 (2004)Google Scholar
  3. 3.
    Buchberger, B.: Gröbner-bases: an algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems, Chap. 6, pp. 184–232. Reidel Publishing Company, Dodrecht, Boston, Lancaster (1985)CrossRefGoogle Scholar
  4. 4.
    Corless, R.: Editor’s corner: Gröbner bases and matrix eigenproblems. ACM SIGSAM Bull. Commun. Comput. Algebra 30, 26–32 (1996)CrossRefGoogle Scholar
  5. 5.
    Corless, R., Gianni, P., Trager, B.: A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 1997), pp. 133–140. ACM Press (1997)Google Scholar
  6. 6.
    Cox, D.: Introduction to Gröbner bases. In: Proceedings of Symposia in Applied Mathematics, pp. 1–24. ACM Press (1998)Google Scholar
  7. 7.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer-Verlag New York, Inc., Secaucus (1998). Scholar
  8. 8.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer-Verlag New York Inc., Secaucus (2007)CrossRefGoogle Scholar
  9. 9.
    Faugère, J.-C., Liang, Y.: Pivoting in extended rings for computing approximate Gröbner bases. Math. Comput. Sci. 5, 179–194 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gianni, P., Mora, T.: Algebrric solution of systems of polynomirl equations using Groebher bases. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 247–257. Springer, Heidelberg (1989). Scholar
  11. 11.
    Kondratyev, A., Stetter, H., Winkler, F.: Numerical computation of Gröbner bases. In: Proceedings of the 7th Workshop on Computer Algebra in Scientific Computation (CASC 2004), pp. 295–306 (2004)Google Scholar
  12. 12.
    Lichtblau, D.: Gröbner bases in mathematica 3.0. Math. J. 6(4), 81–88 (1996). Scholar
  13. 13.
    Lichtblau, D.: Solving finite algebraic systems using numeric Gröbner bases and eigenvalues. In: Proceedings of the World Conference on Systemics, Cybernetics, and Informatics (SCI 2000), vol. 10, pp. 555–560 (2000)Google Scholar
  14. 14.
    Lichtblau, D.: Polynomial GCD and factorization via approximate Gröbner bases. In: Proceedings of the 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2010, Washington, DC, USA, pp. 29–36. IEEE Computer Society (2010)Google Scholar
  15. 15.
    Lichtblau, D.: Approximate Gröbner bases overdetermined polynomial systems, and approximate GCDs. ISRN Comput. Math. 2013, 13 (2013). Scholar
  16. 16.
    Möller, H.M.: Systems of algebraic equations solved by means of endomorphisms. In: Cohen, G., Mora, T., Moreno, O. (eds.) AAECC 1993. LNCS, vol. 673, pp. 43–56. Springer, Heidelberg (1993). Scholar
  17. 17.
    Mourrain, B., Trebuchet, P.: Generalized normal forms and polynomial system solving. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC 2005, New York, NY, USA, pp. pages 253–260. ACM (2005)Google Scholar
  18. 18.
    Sasaki, T., Kako, F.: Computing floating-point Gröbner bases stably. In: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, SNC 2007, New York, NY, USA, pp. 180–189. ACM (2007)Google Scholar
  19. 19.
    Sasaki, T., Kako, F.: Floating-point Gröbner basis computation with ill-conditionedness estimation. Comput. Math. 5081, 278–292 (2008)CrossRefGoogle Scholar
  20. 20.
    Shirayanagi, K.: An algorithm to compute floating point Groebner bases. In: Lee, T. (ed.) Mathematical Computation with Maple V, Ideas and Applications, pp. 95–106. Birkhäuser, Boston (1993). Scholar
  21. 21.
    Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simul. 42(4–6), 509–528 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Stetter, H.: Stabilization of polynomial systems solving with Groebner bases. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (ISSAC 1997), New York, NY, USA, pp. 117–124. ACM (1997)Google Scholar
  23. 23.
    Stetter, H.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)CrossRefGoogle Scholar
  24. 24.
    Traverso, C., Zanoni, A.: Numerical stability and stabilization of Groebner basis computation. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ISSAC 2002), New York, NY, USA, pp. 262–269. ACM (2002)Google Scholar
  25. 25.
    Wolfram, I.: Research. Mathematica 11 (2018)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wolfram ResearchChampaignUSA

Personalised recommendations