Skip to main content

Solving Polynomial Systems Using Numeric Gröbner Bases

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2018 (ICMS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10931))

Included in the following conference series:

Abstract

Systems of polynomial or algebraic equations with finitely many solutions arise in many areas of applied mathematics. I will discuss the design and implementation of a hybrid symbolic-numeric method based on the endomorphism matrix approach pioneered by Stetter and others. It makes use of numeric Gröbner bases and arbitrary-precision eigensystem computations. I will describe how to assess accuracy, find and remove parasite solutions in the case of fractional degrees in the system, handle multiplicity, as well as some of the other finer points not usually covered in the literature. This work is one of the methods used in the Wolfram Language NSolve function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auzinger, W., Stetter, H.: An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. Int. Ser. Numer. Math. 86, 11–31 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bodrato, M., Zanoni, A.: A numerical Gröbner bases and syzygies: an interval approach. In: Proceedings of the 6th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2004), pp. 77–89 (2004)

    Google Scholar 

  3. Buchberger, B.: Gröbner-bases: an algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems, Chap. 6, pp. 184–232. Reidel Publishing Company, Dodrecht, Boston, Lancaster (1985)

    Chapter  Google Scholar 

  4. Corless, R.: Editor’s corner: Gröbner bases and matrix eigenproblems. ACM SIGSAM Bull. Commun. Comput. Algebra 30, 26–32 (1996)

    Article  Google Scholar 

  5. Corless, R., Gianni, P., Trager, B.: A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 1997), pp. 133–140. ACM Press (1997)

    Google Scholar 

  6. Cox, D.: Introduction to Gröbner bases. In: Proceedings of Symposia in Applied Mathematics, pp. 1–24. ACM Press (1998)

    Google Scholar 

  7. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer-Verlag New York, Inc., Secaucus (1998). https://doi.org/10.1007/b138611

    Book  MATH  Google Scholar 

  8. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer-Verlag New York Inc., Secaucus (2007)

    Book  Google Scholar 

  9. Faugère, J.-C., Liang, Y.: Pivoting in extended rings for computing approximate Gröbner bases. Math. Comput. Sci. 5, 179–194 (2011)

    Article  MathSciNet  Google Scholar 

  10. Gianni, P., Mora, T.: Algebrric solution of systems of polynomirl equations using Groebher bases. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 247–257. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51082-6_83

    Chapter  Google Scholar 

  11. Kondratyev, A., Stetter, H., Winkler, F.: Numerical computation of Gröbner bases. In: Proceedings of the 7th Workshop on Computer Algebra in Scientific Computation (CASC 2004), pp. 295–306 (2004)

    Google Scholar 

  12. Lichtblau, D.: Gröbner bases in mathematica 3.0. Math. J. 6(4), 81–88 (1996). http://library.wolfram.com/infocenter/Articles/2179/

    Google Scholar 

  13. Lichtblau, D.: Solving finite algebraic systems using numeric Gröbner bases and eigenvalues. In: Proceedings of the World Conference on Systemics, Cybernetics, and Informatics (SCI 2000), vol. 10, pp. 555–560 (2000)

    Google Scholar 

  14. Lichtblau, D.: Polynomial GCD and factorization via approximate Gröbner bases. In: Proceedings of the 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2010, Washington, DC, USA, pp. 29–36. IEEE Computer Society (2010)

    Google Scholar 

  15. Lichtblau, D.: Approximate Gröbner bases overdetermined polynomial systems, and approximate GCDs. ISRN Comput. Math. 2013, 13 (2013). http://www.hindawi.com/isrn/cm/2013/352806/

    Article  Google Scholar 

  16. Möller, H.M.: Systems of algebraic equations solved by means of endomorphisms. In: Cohen, G., Mora, T., Moreno, O. (eds.) AAECC 1993. LNCS, vol. 673, pp. 43–56. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56686-4_32

    Chapter  Google Scholar 

  17. Mourrain, B., Trebuchet, P.: Generalized normal forms and polynomial system solving. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ISSAC 2005, New York, NY, USA, pp. pages 253–260. ACM (2005)

    Google Scholar 

  18. Sasaki, T., Kako, F.: Computing floating-point Gröbner bases stably. In: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, SNC 2007, New York, NY, USA, pp. 180–189. ACM (2007)

    Google Scholar 

  19. Sasaki, T., Kako, F.: Floating-point Gröbner basis computation with ill-conditionedness estimation. Comput. Math. 5081, 278–292 (2008)

    Article  Google Scholar 

  20. Shirayanagi, K.: An algorithm to compute floating point Groebner bases. In: Lee, T. (ed.) Mathematical Computation with Maple V, Ideas and Applications, pp. 95–106. Birkhäuser, Boston (1993). https://doi.org/10.1007/978-1-4612-0351-3_10

    Chapter  Google Scholar 

  21. Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simul. 42(4–6), 509–528 (1996)

    Article  MathSciNet  Google Scholar 

  22. Stetter, H.: Stabilization of polynomial systems solving with Groebner bases. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (ISSAC 1997), New York, NY, USA, pp. 117–124. ACM (1997)

    Google Scholar 

  23. Stetter, H.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)

    Book  Google Scholar 

  24. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Groebner basis computation. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ISSAC 2002), New York, NY, USA, pp. 262–269. ACM (2002)

    Google Scholar 

  25. Wolfram, I.: Research. Mathematica 11 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lichtblau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lichtblau, D. (2018). Solving Polynomial Systems Using Numeric Gröbner Bases. In: Davenport, J., Kauers, M., Labahn, G., Urban, J. (eds) Mathematical Software – ICMS 2018. ICMS 2018. Lecture Notes in Computer Science(), vol 10931. Springer, Cham. https://doi.org/10.1007/978-3-319-96418-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96418-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96417-1

  • Online ISBN: 978-3-319-96418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics