Universal Gröbner Basis for Parametric Polynomial Ideals

  • Amir Hashemi
  • Mahdi Dehghani DarmianEmail author
  • Marzieh Barkhordar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)


In this paper, we introduce the concept of universal Gröbner basis for a parametric polynomial ideal. In this direction, we present a new algorithm, called UGS, which takes as input a finite set of parametric polynomials and outputs a universal Gröbner system for the ideal generated by input polynomials, by decomposing the space of parameters into a finite set of parametric cells and for each cell associating a finite set of parametric polynomials which is a universal Gröbner basis for the ideal corresponding to that cell. Indeed, for each values of parameters satisfying a condition set, the corresponding polynomial set forms a universal Gröbner basis for the ideal. Our method relies on the parametric variant of the Gröbner basis conversion and also on the PGBMain algorithm due to Kapur et al. to compute parametric Gröbner bases. The proposed UGS algorithm has been implemented in Maple-Sage and its performance is investigated through an example.


Parametric polynomials Gröbner bases Gröbner systems Gröbner fan Universal Gröbner bases Universal Gröbner systems 


  1. 1.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babson, E., Onn, S., Thomas, R.: The Hilbert zonotope and a polynomial time algorithm for universal Gröbner bases. Adv. Appl. Math. 30, 529–544 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buchberger, B.: Bruno Buchberger’s Ph.D thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4), 475–511 (2006). Translation from the GermanMathSciNetCrossRefGoogle Scholar
  4. 4.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0 – A computer algebra system for polynomial computations (2016).
  5. 5.
    Dehghani Darmian, M., Hashemi, A., Montes, A.: Erratum to “A new algorithm for discussing Gröbner bases with parameters” (J. Symbolic Comput. 33(1–2), 183–208 (2002)). J. Symb. Comput. 46(10), 1187–1188 (2011)Google Scholar
  6. 6.
    Fukuda, K., Jensen, A., Lauritzen, N., Thomas, R.: The generic Gröbner walk. J. Symb. Comput. 42(3), 298–312 (2007)CrossRefGoogle Scholar
  7. 7.
    Fukuda, K., Jensen, A.N., Thomas, R.R.: Computing Gröbner fans. Math. Comput. 76(260), 2189–2212 (2007)CrossRefGoogle Scholar
  8. 8.
    Hashemi, A., Dehghani Darmian, M., Barkhordar, M.: Gröbner systems conversion. Math. Comput. Sci. 11(1), 61–77 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jensen, A.N.: Gfan, a software system for Gröbner fans and tropical varieties.
  10. 10.
    Jensen, A.N.: Algorithmic aspects of Gröbner fans and tropical varieties. Technical report (2007)Google Scholar
  11. 11.
    Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of ISSAC 2010. pp. 29–36. ACM Press (2010)Google Scholar
  12. 12.
    Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput. 33(2), 183–208 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6(2–3), 183–208 (1988)CrossRefGoogle Scholar
  14. 14.
    Schwartz, N.: Stability of Gröbner bases. J. Pure Appl. Algebra 53(1–2), 171–186 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stein, W.: Sage: An open source mathematical software (version 7.0). The sage group (2016).
  16. 16.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes. AMS, American Mathematical Society, Providece (1996)zbMATHGoogle Scholar
  17. 17.
    Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of ISSAC 2006, pp. 326–331. ACM Press (2006)Google Scholar
  18. 18.
    Weispfenning, V.: Constructing universal Gröbner bases. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 408–417. Springer, Heidelberg (1989). Scholar
  19. 19.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amir Hashemi
    • 1
  • Mahdi Dehghani Darmian
    • 2
    Email author
  • Marzieh Barkhordar
    • 3
  1. 1.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran
  2. 2.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Department of Computer EngineeringSharif University of TechnologyTehranIran

Personalised recommendations