Advertisement

Axl, a Geometric Modeler for Semi-algebraic Shapes

  • Emmanouil ChristoforouEmail author
  • Angelos Mantzaflaris
  • Bernard Mourrain
  • Julien Wintz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)

Abstract

We describe the algebraic-geometric modeling platform Axl, which provides tools for the manipulation, computation and visualisation of semi-algebraic models. This includes meshes, basic geometric objects such as spheres, cylinders, cones, ellipsoids, torus, piecewise polynomial parameterisations of curves, surfaces or volumes such as b-spline parameterisations, as well as algebraic curves and surfaces defined by polynomial equations. Moreover, Axl provides algorithms for processing these geometric representations, such as computing intersection loci (points, curves) of parametric models, singularities of algebraic curves or surfaces, certified topology of curves and surfaces, etc.

We present its main features and describe its generic extension mechanism, which allows one to define new data types and new processes on the data, which benefit from automatic visualisation and interaction facilities. The application capacities of the software are illustrated by short descriptions of plugins on algebraic curves and surfaces and on splines for Isogeometric Analysis.

Keywords

Semi-algebraic model Isogeometric analysis b-splines Algebraic surface Algebraic-geometric computation Generic programming 

References

  1. 1.
    Alberti, L., Mourrain, B.: Regularity criteria for the topology of algebraic curves and surfaces. In: Martin, R., Sabin, M., Winkler, J. (eds.) Mathematics of Surfaces XII. LNCS, vol. 4647, pp. 1–28. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73843-5_1CrossRefzbMATHGoogle Scholar
  2. 2.
    Alberti, L., Mourrain, B.: Visualisation of implicit algebraic curves. In: Pacific Conference on Computer Graphics and Applications, Lahaina, Maui, Hawaii, United States, pp. 303–312. IEEE Computer Society, October 2007Google Scholar
  3. 3.
    Alberti, L., Mourrain, B., Técourt, J.P.: Isotopic triangulation of a real algebraic surface. J. Symb. Comput. 44(9), 1291–1310 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alberti, L., Mourrain, B., Wintz, J.: Topology and arrangement computation of semi-algebraic planar curves. Comput. Aided Geom. Des. 25(8), 631–651 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Emiris, I., Mantzaflaris, A., Mourrain, B.: Voronoi diagrams of algebraic distance fields. Comput. Aided Des. 45(2), 511–516 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Giannelli, C., Juettler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Speh, J.: THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Juettler, B., Langer, U., Mantzaflaris, A., Moore, S., Zulehner, W.: Geometry + simulation modules: implementing isogeometric analysis. Proc. Appl. Math. Mech. 14(1), 961–962 (2014)CrossRefGoogle Scholar
  8. 8.
    Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discontinuous galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isogeometric Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23315-4_1CrossRefzbMATHGoogle Scholar
  9. 9.
    Liang, C., Mourrain, B., Pavone, J.P.: Subdivision methods for the topology of 2D and 3D implicit curves. In: Juetller, B., Piene, R. (eds.) Geometric Modeling and Algebraic Geometry, pp. 199–214. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72185-7_11CrossRefzbMATHGoogle Scholar
  10. 10.
    Mantzaflaris, A., Mourrain, B.: A subdivision approach to planar semi-algebraic sets. In: Mourrain, B., Schaefer, S., Xu, G. (eds.) GMP 2010. LNCS, vol. 6130, pp. 104–123. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13411-1_8CrossRefGoogle Scholar
  11. 11.
    Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44(3), 292–306 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware, Clifton Park (2006)Google Scholar
  13. 13.
    Wintz, J., Kloczko, T., Niclausse, N., Rey, D.: dtk - a metaplatform for scientific software development. ERCIM News 2012(88) (2012). http://ercim-news.ercim.eu/en88/ri/dtk-a-metaplatform-for-scientific-software-development

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emmanouil Christoforou
    • 1
    • 2
    Email author
  • Angelos Mantzaflaris
    • 3
  • Bernard Mourrain
    • 1
  • Julien Wintz
    • 1
  1. 1.Inria Sophia Antipolis - MéditerranéeSophia AntipolisFrance
  2. 2.National and Kapodistrian University of AthensAthensGreece
  3. 3.Johannes Kepler UniversityLinzAustria

Personalised recommendations