Advertisement

Numerical Software to Compute Newton Polytopes

  • Taylor BrysiewiczEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10931)

Abstract

We present our implementation of an algorithm which functions as a numerical oracle for the Newton polytope of a hypersurface in the Macaulay2 package NumericalNP.m2. To showcase this software, we investigate the Newton polytope of both a hypersurface coming from algebraic vision and the classical Lüroth invariant.

References

  1. 1.
    Bates, D.J., Gross, E., Leykin, A., Israel Rodriguez, J.: Bertini for Macaulay2 (2013)Google Scholar
  2. 2.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry. Available at bertini.nd.edu with permanent  https://doi.org/10.7274/R0H41PB5
  3. 3.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  4. 4.
    Bernstein, D.: The number of roots of a system of equations. Funct. Anal. Appl. 9, 183–185 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brysiewicz, T.: Numerical computations of newton polytopes (2018). http://www.math.tamu.edu/~tbrysiewicz/NumericalNP
  6. 6.
    Emiris, I.A., Fisikopoulos, V., Konaxis, C., Penaranda, L.: An oracle-based, output-sensitive algorithm for projections of resultant polytopes. Int. J. Comput. Geom. Appl. 23(04n05), 397 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
  8. 8.
    Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Comput. 217(7), 3349–3354 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hauenstein, J.D., Sottile, F.: Newton polytopes and witness sets. Math. Comput. Sci. 8(2), 235–251 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Khovanskii, A.: Newton polyhedra (algebra and geometry). Amer. Math. Soc. Transl. 153(2) (1992)Google Scholar
  11. 11.
    Ponce, J., Sturmfels, B., Trager, M.: Congruences and concurrent lines in multi-view geometry. Adv. Appl. Math. 88, 62–91 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stein, W., et al.: Sage Mathematics Software (Version x.y.z). The Sage Development Team (2017). http://www.sagemath.org

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations