Skip to main content

Iterative Linearisation Schemes for Doubly Degenerate Parabolic Equations

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Abstract

Mathematical models for flow and reactive transport in porous media often involve non-linear, degenerate parabolic equations. Their solutions have low regularity, and therefore lower order schemes are used for the numerical approximation. Here the backward Euler method is combined with a mixed finite element method, which results in a stable and locally mass-conservative scheme. At each time step one has to solve a non-linear algebraic system, for which one needs adequate iterative solvers. Finding robust ones is particularly challenging here, since the problems considered are double degenerate (i.e. two type of degeneracies are allowed: parabolic-elliptic and parabolic-hyperbolic).

Commonly used schemes, like Newton and Picard, are defined either for non-degenerate problems, or after regularising the problem in the case of degenerate ones. Convergence is guaranteed only if the initial guess is sufficiently close to the solution, which translates into severe restrictions on the time step. Here we discuss an iterative linearisation scheme which builds on the L-scheme, and does not employ any regularisation. We prove its rigorous convergence, which is obtained for Hölder type non-linearities. Finally, we present numerical results confirming the theoretical ones, and compare the behaviour of the proposed scheme with schemes based on a regularisation step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)

    Article  MathSciNet  Google Scholar 

  2. T. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow. J. Nonlinear Anal. Theory Methods Appl. 19, 1009–1031 (1992)

    Article  MathSciNet  Google Scholar 

  3. N. Bergamashi, M. Putti, Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation. Int. J. Numer. Methods Eng. 45, 1025–1046 (1999)

    Article  MathSciNet  Google Scholar 

  4. K. Brenner, C. Cances, Improving Newton’s method performance by parametrization: the case of the Richards equation. SIAM J. Numer. Anal. 55, 1760–1785 (2017)

    Article  MathSciNet  Google Scholar 

  5. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991)

    Book  Google Scholar 

  6. M. Celia, E. Bouloutas, R. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26, 1483–1496 (1990)

    Article  Google Scholar 

  7. Z. Chen, Degenerate two-phase incompressible flow. Existence, uniqueness and regularity of a weak solution. J. Differ. Equ. 171, 203–232 (2001)

    Article  MathSciNet  Google Scholar 

  8. L. Cherfils, C. Choquet, M.M. Diedhiou, Numerical validation of an upscaled sharp-diffuse interface model for stratified miscible flows. Math. Comput. Simul. 137, 246–265 (2017)

    Article  MathSciNet  Google Scholar 

  9. J. Douglas Jr., J. Roberts, Global estimates for mixed methods for second order elliptic problems. Math. Comput. 45, 39–52 (1985)

    Article  Google Scholar 

  10. M.W. Farthing, F.L. Ogden, Numerical solution of Richards equation: a review of advances and challenges. Soil Sci. Soc. Am. J. (2017). https://doi.org/10.2136/sssaj2017.02.0058

    Article  Google Scholar 

  11. W. Jäger, J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. Math. Model. Numer. Anal. 29, 605–627 (1995)

    Article  MathSciNet  Google Scholar 

  12. F. Lehmann, P. Ackerer, Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transp. Porous Med. 31, 275–292 (1998)

    Article  Google Scholar 

  13. F. List, F.A. Radu, A study on iterative methods for Richards’ equation. Comput. Geosci. 20, 341–353 (2016)

    Article  MathSciNet  Google Scholar 

  14. R.H. Nochetto, C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25, 784–814 (1988)

    Article  MathSciNet  Google Scholar 

  15. J.M. Nordbotten, M.A. Celia, Geological Storage of CO2. Modeling Approaches for Large-Scale Simulation (Wiley, Hokoben, 2012)

    Google Scholar 

  16. F. Otto, L 1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131, 20–38 (1996)

    Article  MathSciNet  Google Scholar 

  17. C. Paniconi, M. Putti, A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems. Water Resour. Res. 30, 3357–3374 (1994)

    Article  Google Scholar 

  18. E.J. Park, Mixed finite elements for non-linear second-order elliptic problems. SIAM J. Numer. Anal. 32, 865–885 (1995)

    Article  MathSciNet  Google Scholar 

  19. I.S. Pop, F.A. Radu, P. Knabner, Mixed finite elements for the Richards’ equations: linearization procedure. J. Comput. Appl. Math. 168, 365–373 (2004)

    Article  MathSciNet  Google Scholar 

  20. F.A. Radu, I.S. Pop, P. Knabner, On the convergence of the Newton method for the mixed finite element discretization of a class of degenerate parabolic equation, in Numerical Mathematics and Advanced Applications ed. by A. Bermudez de Castro, D. Gomez, P. Quintela, P. Salgado (Springer, Berlin, 2006), pp. 1192–1200

    Google Scholar 

  21. F.A. Radu, I.S. Pop, P. Knabner, Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math. 109, 285–311 (2008)

    Article  MathSciNet  Google Scholar 

  22. F.A. Radu, K. Kumar, J.M. Nordbotten, I.S. Pop, A convergent mass conservative numerical scheme based on mixed finite elements for two-phase flow in porous media. arHiv: 1512.08387 (2015)

    Google Scholar 

  23. F.A. Radu, J.M. Nordbotten, I.S. Pop, K. Kumar, A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)

    Article  MathSciNet  Google Scholar 

  24. F.A. Radu, K. Kumar, J.M. Nordbotten, I.S. Pop, A robust, mass conservative scheme for two- phase flow in porous media including Hölder continuous nonlinearities. IMA J. Numer. Anal. 38, 884–920 (2018)

    Article  MathSciNet  Google Scholar 

  25. M. Slodicka, A robust and efficient linearization scheme for doubly non-linear and degenerate parabolic problems arising in flow in porous media. SIAM J. Sci. Comput. 23, 1593–1614 (2002)

    Article  MathSciNet  Google Scholar 

  26. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (AMS Chelsea Publishing, Providence, 2001)

    Book  Google Scholar 

  27. W.A. Yong, I.S. Pop, A numerical approach to porous medium equations. Preprint 95–50 (SFB 359), IWR, University of Heidelberg, 1996

    Google Scholar 

Download references

Acknowledgements

The research is partially supported by the Norwegian Research Council (NFR) through the NFR-DAAD grant 255715, the VISTA project AdaSim 6367 and the project Toppforsk 250223, Lab2Field 811716, by Statoil through the Akademia Grant and by the Research Foundation-Flanders (FWO) through the Odysseus programme (project G0G1316N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliu Sorin Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Both, J.W., Kumar, K., Nordbotten, J.M., Pop, I.S., Radu, F.A. (2019). Iterative Linearisation Schemes for Doubly Degenerate Parabolic Equations. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_3

Download citation

Publish with us

Policies and ethics