Skip to main content

Laboratory Evaluation of Hepatobiliary Disease

  • Chapter
  • First Online:
Book cover Pediatric Hepatology and Liver Transplantation

Abstract

The clinical symptoms in hepatobiliary diseases may be very subtle and in fact often nonexisting. Laboratory evaluation is therefore central both for establishing the right diagnosis and assessing the course during the follow-up. However, a limitation is that the different biochemical tests may be unspecific and rarely give the actual etiological diagnosis. Furthermore, pathological results of some of the tests are not exclusive for liver diseases, for example, elevated aminotransferases may also signal a muscular disorder. To this end, it is necessary to understand the different aspects of the often called liver function tests in order to characterize the findings properly and understand when to look for the causes of pathologic laboratory markers elsewhere. Another key point to the interpretation of these tests is the existence of age-dependent variations in normal levels as well as the dynamic changes over time in reaction to different underlying diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karmen A, Wroblewski F, Ladue JS. Transaminase activity in human blood. J Clin Invest. 1955;34(1):126–31. PubMed PMID: 13221663; PubMed Central PMCID: PMC438594.

    Article  CAS  Google Scholar 

  2. Panteghini M. Aspartate aminotransferase isoenzymes. Clin Biochem. 1990;23(4):311–9. Review. PubMed PMID: 2225456.

    Article  CAS  Google Scholar 

  3. Price CP, Alberti KG. Biochemical assessment of liver function. In: Wright R, Alberti KGMM, Karran S, Millward-Sadler GH, editors. Liver and biliary disease—pathophysiology, diagnosis, management. London: WB Saunders; 1979. p. 381–416.

    Google Scholar 

  4. Dybkaer R. The tortuous road to the adoption of katal for the expression of catalytic activity by the General Conference on Weights and Measures. Clin Chem. 2002;48(3):586–90. PubMed PMID: 11861460.

    CAS  PubMed  Google Scholar 

  5. Nuttall FQ, Jones B. Creatine kinase and glutamic oxalacetic transaminase activity in serum: kinetics of change with exercise and effect of physical conditioning. J Lab Clin Med. 1968;71(5):847–54. PubMed PMID: 5647686.

    CAS  PubMed  Google Scholar 

  6. Pettersson J, Hindorf U, Persson P, Bengtsson T, Malmqvist U, Werkström V, Ekelund M. Muscular exercise can cause highly pathological liver function tests in healthy men. Br J Clin Pharmacol. 2008;65(2):253–9. PubMed PMID: 17764474.

    Article  Google Scholar 

  7. Córdoba J, O’Riordan K, Dupuis J, Borensztajin J, Blei AT. Diurnal variation of serum alanine transaminase activity in chronic liver disease. Hepatology. 1998;28(6):1724–5. PubMed PMID: 9890798.

    Article  Google Scholar 

  8. Rivera-Coll A, Fuentes-Arderiu X, Díez-Noguera A. Circadian rhythms of serum concentrations of 12 enzymes of clinical interest. Chronobiol Int. 1993;10(3):190–200. PubMed PMID: 8100488.

    Article  CAS  Google Scholar 

  9. Rödöö P, Ridefelt P, Aldrimer M, Niklasson F, Gustafsson J, Hellberg D. Population-based pediatric reference intervals for HbA1c, bilirubin, albumin, CRP, myoglobin and serum enzymes. Scand J Clin Lab Invest. 2013;73(5):361–7. PubMed PMID: 23581477.

    Article  Google Scholar 

  10. Williams KM, Williams AE, Kline LM, Dodd RY. Stability of serum alanine aminotransferase activity. Transfusion. 1987;27(5):431–3. PubMed PMID: 3629675.

    Article  CAS  Google Scholar 

  11. Caropreso M, Fortunato G, Lenta S, Palmieri D, Esposito M, Vitale DF, Iorio R, Vajro P. Prevalence and long-term course of macro-aspartate aminotransferase in children. J Pediatr. 2009;154(5):744–8. https://doi.org/10.1016/j.jpeds.2008.11.010. Epub 2008 Dec 25. PubMed PMID: 19111320.

    Article  CAS  PubMed  Google Scholar 

  12. Moriyama T, Tamura S, Nakano K, Otsuka K, Shigemura M, Honma N. Laboratory and clinical features of abnormal macroenzymes found in human sera. Biochim Biophys Acta. 2015;1854(6):658–67.

    Article  CAS  Google Scholar 

  13. Vajro P, Maddaluno S, Veropalumbo C. Persistent hypertransaminasemia in asymptomatic children: a stepwise approach. World J Gastroenterol. 2013;19(18):2740–51. Review. PubMed PMID: 23687411.

    Article  Google Scholar 

  14. Rosenthal P, Haight M. Aminotransferase as a prognostic index in infants with liver disease. Clin Chem. 1990;36(2):346–8.

    CAS  PubMed  Google Scholar 

  15. Lamireau T, McLin V, Nobili V, Vajro P. A practical approach to the child with abnormal liver tests. Clin Res Hepatol Gastroenterol. 2014;38:259–62.

    Article  Google Scholar 

  16. Thierfelder N, Demuth I, Burghardt N, Schmelz K, Sperling K, Chrzanowska KH, Seemanova E, Digweed M. Extreme variation in apoptosis capacity amongst lymphoid cells of Nijmegen breakage syndrome patients. Eur J Cell Biol. 2008;87(2):111–21. Epub 2007 Oct 30. PubMed PMID: 17977616.

    Article  CAS  Google Scholar 

  17. George J, Denney-Wilson E, Okely AD, Hardy LL, Aitken R. The population distributions, upper normal limits and correlations between liver tests among Australian adolescents. J Paediatr Child Health. 2008;44(10):579–85. PubMed PMID: 19012630.

    Article  Google Scholar 

  18. England K, Thorne C, Pembrey L, Tovo PA, Newell ML. Age- and sex-related reference ranges of alanine aminotransferase levels in children: European paediatric HCV network. J Pediatr Gastroenterol Nutr. 2009;49(1):71–7. PubMed PMID: 19465871.

    Article  CAS  Google Scholar 

  19. Lai DS, Chen SC, Chang YH, Chen CY, Lin JB, Lin YJ, Yang SF, Yang CC, Chen WK, Lin DB. Pediatric reference intervals for several biochemical analytes in school children in Central Taiwan. J Formos Med Assoc. 2009;108(12):957–63.

    Article  Google Scholar 

  20. Southcott EK, Kerrigan JL, Potter JM, Telford RD, Waring P, Reynolds GJ, Lafferty AR, Hickman PE. Establishment of pediatric reference intervals on a large cohort of healthy children. Clin Chim Acta. 2010;411(19–20):1421–7. PubMed PMID: 20598674.

    Article  CAS  Google Scholar 

  21. Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, Pasic MD, Armbruster D, Adeli K. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem. 2012;58(5):854–68. PubMed PMID: 22371482.

    Article  CAS  Google Scholar 

  22. Hilsted L, Rustad P, Aksglæde L, Sørensen K, Juul A. Recommended Nordic paediatric reference intervals for 21 common biochemical properties. Scand J Clin Lab Invest. 2013;73(1):1–9. Epub 2012 Sep 26.

    Article  CAS  Google Scholar 

  23. Bussler S, Vogel M, Pietzner D, Harms K, Buzek T, Penke M, Händel N, Körner A, Baumann U, Kiess W, Flemming G. New pediatric percentiles of liver enzyme serum levels (ALT, AST, GGT): Effects of age, sex, BMI and pubertal stage. Hepatology. 2018;68(4):1319–30. PubMed PMID: 28926121.

    Article  CAS  Google Scholar 

  24. Schwimmer JB, Dunn W, Norman GJ, Pardee PE, Middleton MS, Kerkar N, Sirlin CB. SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology. 2010;138(4):1357–64, 1364. PubMed PMID: 20064512.

    Article  CAS  Google Scholar 

  25. Robison R. The possible significance of hexosephosphoric esters in ossification. Biochem J. 1923;17(2):286–93. PubMed PMID: 16743183.

    Article  CAS  Google Scholar 

  26. Van Hoof VO, De Broe ME. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci. 1994;31(3):197–293. Review. PubMed PMID: 7818774.

    Article  CAS  Google Scholar 

  27. Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem. 2014;29(3):269–78. Review. PubMed PMID: 24966474.

    Article  CAS  Google Scholar 

  28. Carroll AJ, Coakley JC. Transient hyperphosphatasaemia: an important condition to recognize. J Paediatr Child Health. 2001;37(4):359–62. PubMed PMID: 11532055.

    Article  CAS  Google Scholar 

  29. Gualco G, Lava SA, Garzoni L, Simonetti GD, Bettinelli A, Milani GP, Provero MC, Bianchetti MG. Transient benign hyperphosphatasemia. J Pediatr Gastroenterol Nutr. 2013;57(2):167–71. PubMed PMID: 23539049.

    Article  Google Scholar 

  30. Shaver WA, Bhatt H, Combes B. Low serum alkaline phosphatase activity in Wilson’s disease. Hepatology. 1986;6(5):859–63.

    Article  CAS  Google Scholar 

  31. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994;15(4):439–61. Review. PubMed PMID: 7988481.

    CAS  PubMed  Google Scholar 

  32. Hanes CS, Hird FJ, Isherwood FA. Synthesis of peptides in enzymic reactions involving glutathione. Nature. 1950;166(4216):288–92. PubMed PMID: 15439292.

    Article  CAS  Google Scholar 

  33. Goldberg DM. Structural, functional, and clinical aspects of gamma-glutamyltransferase. CRC Crit Rev Clin Lab Sci. 1980;12(1):1–58. Review. PubMed PMID: 6104563.

    Article  CAS  Google Scholar 

  34. Vroon DH, Israili Z. Chapter 100. Alkaline phosphatase and gamma glutamyltransferase. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. PubMed PMID: 21250047.

    Google Scholar 

  35. Cabrera-Abreu JC, Green A. Gamma-glutamyltransferase: value of its measurement in paediatrics. Ann Clin Biochem. 2002;39(Pt 1):22–5. Review. PubMed PMID: 11853185.

    Article  CAS  Google Scholar 

  36. Wang NL, Li LT, Wu BB, Gong JY, Abuduxikuer K, Li G, Wang JS. The features of GGT in patients with ATP8B1 or ABCB11 deficiency improve the diagnostic efficiency. PLoS One. 2016;11(4):e0153114. PubMed PMID: 27050426.

    Article  Google Scholar 

  37. Fischler B, Eggertsen G, Björkhem I. Genetic defects in synthesis and transport of bile acids. In: Pediatric endocrinology and metabolic diseases. 2017. p. 447–60.

    Google Scholar 

  38. Suchy FJ, Balistreri WF, Heubi JE, Searcy JE, Levin RS. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology. 1981;80:1037–41.

    Article  CAS  Google Scholar 

  39. Gitlin D, Perricelli A, Gitlin GM. Synthesis of α-fetoprotein by liver, yolk sac, and gastrointestinal tract of the human conceptus. Cancer Res. 1972;32:979–82.

    CAS  PubMed  Google Scholar 

  40. Blohm ME, Vesterling-Hörner D, Calaminus G, et al. Alpha 1-fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr Hematol Oncol. 1998;15:135–42.

    Article  CAS  Google Scholar 

  41. Murray MJ, Nicholson JC. α-Fetoprotein. Arch Dis Child Educ Pract Ed. 2011;96:141–7.

    Article  CAS  Google Scholar 

  42. De Ioris M, Brugieres L, Zimmermann A, et al. Hepatoblastoma with a low serum alpha-fetoprotein level at diagnosis: the SIOPEL group experience. Eur J Cancer. 2008;44:545–50.

    Article  Google Scholar 

  43. Koprowaski H, Steplewski Z, Mitchell K, et al. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet. 1979;5:957–72.

    Article  Google Scholar 

  44. Nehls O, Gregor M, Klump B. Serum and bile markers for cholangiocarcinoma. Semin Liver Dis. 2004;24:139–54.

    Article  CAS  Google Scholar 

  45. Lamerz R. Role of tumour markers, cytogenetics. Ann Oncol. 1999;10(Suppl. 4):S145–9.

    Article  Google Scholar 

  46. Tripodi A, Chantarangkul V, Primignani M, Fabris F, Dell’Era A, Sei C, Mannucci PM. The international normalized ratio calibrated for cirrhosis (INR(liver)) normalizes prothrombin time results for model for end-stage liver disease calculation. Hepatology. 2007;46(2):520–7.

    Article  Google Scholar 

  47. Magnusson M, Sten-Linder M, Bergquist A, et al. The international normalized ratio according to Owren in liver disease: interlaboratory assessment and determination of international sensitivity index. Thromb Res. 2013;132:346–51.

    Article  CAS  Google Scholar 

  48. Cederblad G, Korsan-Bengtsen K, Olsson R. Observations of increased levels of blood coagulation factors and other plasma proteins in cholestatic liver disease. Scand J Gastroenterol. 1976;11:391–6.

    CAS  PubMed  Google Scholar 

  49. Magnusson M, Fischler B, Svensson J, Petrini P, Schulman S, Németh A. Bile acids and coagulation factors: paradoxical association in children with chronic liver disease. Eur J Gastroenterol Hepatol. 2013;25:152–8.

    Article  CAS  Google Scholar 

  50. Squires RH, Schneider BL, Bucuvalas J, et al. Acute liver failure in children: the first 348 patients in the Pediatric Acute Liver Failure Study Group. J Pediatr. 2006;148:652–8.

    Article  Google Scholar 

  51. Franchini M, Lippi G. Prothrombin complex concentrates: an update. Blood Transfus. 2010;8(3):149–54.

    PubMed  PubMed Central  Google Scholar 

  52. McDiarmid SV, Anand R, Lindblad AS, Principal Investigators and Institutions of the Studies of Pediatric Liver Transplantation (SPLIT) Research Group. Development of a pediatric end-stage liver disease score to predict poor outcome in children awaiting liver transplantation. Transplantation. 2002;27:173–81.

    Article  Google Scholar 

  53. O’Grady JG, Alexander GJ, Hayllar KM, Williams R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology. 1989;97:439–45.

    Article  Google Scholar 

  54. Dhawan A, Taylor RM, Cheeseman P, et al. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl. 2005;11:441–8.

    Article  Google Scholar 

  55. Lu BR, Zhang S, Narkewicz MR, et al. Evaluation of the liver injury unit scoring system to predict survival in a multinational study of pediatric acute liver failure. J Pediatr. 2013;162:1010–6.

    Article  Google Scholar 

  56. Bernuau J, Goudeau A, Poynard T, et al. Multivariate analysis of prognostic factors in fulminant hepatitis B. Hepatology. 1986;6:648–51.

    Article  CAS  Google Scholar 

  57. Izumi S, Langley PG, Wendon J, et al. Coagulation factor V levels as a prognostic indicator in fulminant hepatic failure. Hepatology. 1996;23:1507–11.

    Article  CAS  Google Scholar 

  58. Dymock IW, Tucker JS, Woolf IL, Poller L, Thomson JM. Coagulation studies as a prognostic index in acute liver failure. Br J Haematol. 1975;29:385–95.

    Article  CAS  Google Scholar 

  59. Elinav E, Ben-Dov I, Hai-Am E, Ackerman Z, Ofran Y. The predictive value of admission and follow up factor V and VII levels in patients with acute hepatitis and coagulopathy. J Hepatol. 2005;42(1):82–6.

    Article  CAS  Google Scholar 

  60. Rodzynek JJ, Preux C, Leautaud P, Abramovici J, Di Paolo A, Delcourt AA. Diagnostic value of antithrombin III and aminopyrine breath test in liver disease. Arch Intern Med. 1986;146:677–80.

    Article  CAS  Google Scholar 

  61. Andrew M, Paes B, Milner R, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70:165–72.

    CAS  PubMed  Google Scholar 

  62. Monagle P, Massicotte P. Developmental haemostasis: secondary haemostasis. Semin Fetal Neonatal Med. 2011;16:294–300.

    Article  Google Scholar 

  63. Watanabe T. Short-term prognostic factors for primary sclerosing cholangitis. J Hepatobiliary Pancreat Sci. 2015;22:486–90.

    Article  Google Scholar 

  64. Dabos KJ, Newsome PN, Parkinson JA, et al. Biochemical prognostic markers of outcome in non-paracetamol-induced fulminant hepatic failure. Transplantation. 2004;77:200–5.

    Article  CAS  Google Scholar 

  65. Pferdmenges DC, Baumann U, Müller-Heine A, Framke T, Pfister ED. Prognostic marker for liver disease due to alpha1-antitrypsin deficiency. Klin Padiatr. 2013;225:257–62.

    Article  CAS  Google Scholar 

  66. Abbas M, Abbas Z. Serum cholinesterase: a predictive biomarker of hepatic reserves in chronic hepatitis D. World J Hepatol. 2017;9:967–72.

    Article  Google Scholar 

  67. Santarpia L, Grandone I, Contaldo F, Pasanisi F. Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle. 2013;4(1):31–9.

    Article  Google Scholar 

  68. Botros M, Sikaris KA. The de ritis ratio: the test of time. Clin Biochem Rev. 2013;34(3):117–30. Review. PubMed PMID: 24353357.

    PubMed  PubMed Central  Google Scholar 

  69. Tsuchida Y, Endo Y, Saito S, Kaneko M, Shiraki K, Ohmi K. Evaluation of alpha-fetoprotein in early infancy. J Pediatr Surg. 1978;13(2):155–62. PubMed PMID: 77324.

    Article  CAS  Google Scholar 

  70. Giannini EG, et al. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172(3):367–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Arnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnell, H., Fischler, B. (2019). Laboratory Evaluation of Hepatobiliary Disease. In: D'Antiga, L. (eds) Pediatric Hepatology and Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-96400-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96400-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96399-0

  • Online ISBN: 978-3-319-96400-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics