Skip to main content

Liver Transplantation for Inherited Metabolic Disorders

  • Chapter
  • First Online:

Abstract

Recent advances in the understanding of inborn metabolic defects have led to significant improvements in selection, timing and management of patient undergoing liver transplantation (LT) for these disorders.

LT can cure defects mainly confined to the liver, such as Crigler-Najjar syndrome, urea cycle defects, maple syrup urine disease and primary hyperoxaluria, or improve the phenotype of defects expressed also in other organs, such as propionic and methylmalonic acidurias or some glycogen storage defects. With the increasing confidence gathered in the field of LT, this procedure has been considered in a growing range of metabolic disorders. In some other complex metabolic conditions, such as mitochondrial cytopathies, though, the indication to LT remains troublesome and controversial.

Other important issues to further explore in this setting are the extensive use of heterozygous donors (usually safe), the strategy of domino transplantation (feasible in few cases), the importance of transplanting at early ages versus later in childhood and a timely consideration of other treatment options that are rapidly developing for these patients, such as cell transplantation and gene therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fisch RO, McCabe ER, Doeden D, et al. Homotransplantation of the liver in a patient with hepatoma and hereditary tyrosinemia. J Pediatr. 1978;93(4):592–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Largilliere C, Houssin D, Gottrand F, et al. Liver transplantation for ornithine transcarbamylase deficiency in a girl. J Pediatr. 1989;115(3):415–7.

    Article  CAS  PubMed  Google Scholar 

  3. Fagiuoli S, Daina E, D’Antiga L, et al. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013;59(3):595–612.

    Article  PubMed  Google Scholar 

  4. Mazariegos G, Shneider B, Burton B, et al. Liver transplantation for pediatric metabolic disease. Mol Genet Metab. 2014;111(4):418–27.

    Article  CAS  PubMed  Google Scholar 

  5. Stevenson T, Millan MT, Wayman K, et al. Long-term outcome following pediatric liver transplantation for metabolic disorders. Pediatr Transplant. 2010;14(2):268–75.

    Article  PubMed  Google Scholar 

  6. Arnon R, Kerkar N, Davis MK, et al. Liver transplantation in children with metabolic diseases: the studies of pediatric liver transplantation experience. Pediatr Transplant. 2010;14(6):796–805.

    Article  PubMed  Google Scholar 

  7. Kayler LK, Rasmussen CS, Dykstra DM, et al. Liver transplantation in children with metabolic disorders in the United States. Am J Transplant. 2003;3(3):334–9.

    Article  PubMed  Google Scholar 

  8. Mc Kiernan PJ. Recent advances in liver transplantation for metabolic disease. J Inherit Metab Dis. 2017;40(4):491–5.

    Article  CAS  PubMed  Google Scholar 

  9. Fujisawa D, Nakamura K, Mitsubuchi H, et al. Clinical features and management of organic acidemias in Japan. J Hum Genet. 2013;58(12):769–74.

    Article  PubMed  Google Scholar 

  10. Sze YK, Dhawan A, Taylor RM, et al. Pediatric liver transplantation for metabolic liver disease: experience at King’s College Hospital. Transplantation. 2009;87(1):87–93.

    Article  PubMed  Google Scholar 

  11. Morioka D, Kasahara M, Horikawa R, et al. Efficacy of living donor liver transplantation for patients with methylmalonic acidemia. Am J Transplant. 2007;7(12):2782–7.

    Article  CAS  PubMed  Google Scholar 

  12. McKiernan PJ, Preece MA, Chakrapani A. Outcome of children with hereditary tyrosinaemia following newborn screening. Arch Dis Child. 2015;100(8):738–41.

    Article  CAS  PubMed  Google Scholar 

  13. Haberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Unsinn C, Das A, Valayannopoulos V, et al. Clinical course of 63 patients with neonatal onset urea cycle disorders in the years 2001–2013. Orphanet J Rare Dis. 2016;11(1):116.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wakiya T, Sanada Y, Mizuta K, et al. Living donor liver transplantation for ornithine transcarbamylase deficiency. Pediatr Transplant. 2011;15(4):390–5.

    Article  CAS  PubMed  Google Scholar 

  16. Muelly ER, Moore GJ, Bunce SC, et al. Biochemical correlates of neuropsychiatric illness in maple syrup urine disease. J Clin Invest. 2013;123(4):1809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meyburg J, Hoffmann GF. Liver transplantation for inborn errors of metabolism. Transplantation. 2005;80(1 Suppl):S135–7.

    Article  PubMed  Google Scholar 

  18. McBride KL, Miller G, Carter S, et al. Developmental outcomes with early orthotopic liver transplantation for infants with neonatal-onset urea cycle defects and a female patient with late-onset ornithine transcarbamylase deficiency. Pediatrics. 2004;114(4):e523–6.

    Article  PubMed  Google Scholar 

  19. Ah Mew N, Krivitzky L, McCarter R, et al. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ. J Pediatr. 2013;162(2):324–9.e1.

    Article  CAS  PubMed  Google Scholar 

  20. Perito ER, Rhee S, Roberts JP, et al. Pediatric liver transplantation for urea cycle disorders and organic acidemias: United Network for Organ Sharing data for 2002–2012. Liver Transpl. 2014;20(1):89–99.

    Article  PubMed  Google Scholar 

  21. Morioka D, Kasahara M, Takada Y, et al. Current role of liver transplantation for the treatment of urea cycle disorders: a review of the worldwide English literature and 13 cases at Kyoto University. Liver Transpl. 2005;11(11):1332–42.

    Article  PubMed  Google Scholar 

  22. Rahayatri TH, Uchida H, Sasaki K, et al. Hyperammonemia in ornithine transcarbamylase-deficient recipients following living donor liver transplantation from heterozygous carrier donors. Pediatr Transplant. 2017;21(1).

    Article  CAS  Google Scholar 

  23. Yu L, Rayhill SC, Hsu EK, et al. Liver transplantation for urea cycle disorders: analysis of the United Network for Organ Sharing Database. Transplant Proc. 2015;47(8):2413–8.

    Article  CAS  PubMed  Google Scholar 

  24. Brassier A, Gobin S, Arnoux JB, et al. Long-term outcomes in ornithine transcarbamylase deficiency: a series of 90 patients. Orphanet J Rare Dis. 2015;10:58.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Batshaw ML, Tuchman M, Summar M, et al. A longitudinal study of urea cycle disorders. Mol Genet Metab. 2014;113(1–2):127–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallagher RC, Lam C, Wong D, et al. Significant hepatic involvement in patients with ornithine transcarbamylase deficiency. J Pediatr. 2014;164(4):720–25.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vara R, Dhawan A, Deheragoda M, et al. Liver transplantation for neonatal-onset citrullinemia. Pediatr Transplant. 2018;22(4):e13191.

    Article  PubMed  Google Scholar 

  28. Todo S, Starzl TE, Tzakis A, et al. Orthotopic liver transplantation for urea cycle enzyme deficiency. Hepatology. 1992;15(3):419–22.

    Article  CAS  PubMed  Google Scholar 

  29. Ishida T, Hiroma T, Hashikura Y, et al. Early neonatal onset carbamoyl-phosphate synthase 1 deficiency treated with continuous hemodiafiltration and early living-related liver transplantation. Pediatr Int. 2009;51(3):409–10.

    Article  CAS  PubMed  Google Scholar 

  30. Huang HP, Chien YH, Huang LM, et al. Viral infections and prolonged fever after liver transplantation in young children with inborn errors of metabolism. J Formos Med Assoc. 2005;104(9):623–9.

    PubMed  Google Scholar 

  31. Tuchman M. Persistent a citrullinemia after liver transplantation for carbamylphosphate synthetase deficiency. N Engl J Med. 1989;320(22):1498–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kasahara M, Sakamoto S, Shigeta T, et al. Living-donor liver transplantation for carbamoyl phosphate synthetase 1 deficiency. Pediatr Transplant. 2010;14(8):1036–40.

    Article  CAS  PubMed  Google Scholar 

  33. Robberecht E, Maesen S, Jonckheere A, et al. Successful liver transplantation for argininosuccinate lyase deficiency (ASLD). J Inherit Metab Dis. 2006;29(1):184–5.

    Article  CAS  PubMed  Google Scholar 

  34. Newnham T, Hardikar W, Allen K, et al. Liver transplantation for argininosuccinic aciduria: clinical, biochemical, and metabolic outcome. Liver Transpl. 2008;14(1):41–5.

    Article  PubMed  Google Scholar 

  35. Marble M, McGoey RR, Mannick E, et al. Living related liver transplant in a patient with argininosuccinic aciduria and cirrhosis: metabolic follow-up. J Pediatr Gastroenterol Nutr. 2008;46(4):453–6.

    Article  PubMed  Google Scholar 

  36. Ozcay F, Baris Z, Moray G, et al. Report of 3 patients with urea cycle defects treated with related living-donor liver transplant. Exp Clin Transplant. 2015;13(Suppl 3):126–30.

    PubMed  Google Scholar 

  37. Szymanska E, Kalicinski P, Pawlowska J, et al. Polish experience with liver transplantation and post-transplant outcomes in children with urea cycle disorders. Ann Transplant. 2017;22:555–62.

    Article  PubMed  Google Scholar 

  38. Ranucci G, Martinelli D, Maiorana A, Liguori A, Liccardo D, Candusso M, Cotugno G, Taurisano R, Grimaldi C, Goffredo B, Semeraro M, Cairoli S, Pariante R, Tortor F, Spada M, Torre G, Dionisi Vici C. The impact of liver transplantation on plasma and CSF amino acids in patients with argininosuccinic aciduria. J Pediatr Gastroenterol Nutr Geneve. 2018:634.

    Google Scholar 

  39. Kido J, Matsumoto S, Mitsubuchi H, et al. Early liver transplantation in neonatal-onset and moderate urea cycle disorders may lead to normal neurodevelopment. Metab Brain Dis. 2018;33(5):1517–23.

    Article  CAS  PubMed  Google Scholar 

  40. Wendel U, Saudubray JM, Bodner A, et al. Liver transplantation in maple syrup urine disease. Eur J Pediatr. 1999;158(Suppl 2):S60–4.

    Article  PubMed  Google Scholar 

  41. Mazariegos GV, Morton DH, Sindhi R, et al. Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing Experience. J Pediatr. 2012;160(1):116–21.e1.

    Article  PubMed  Google Scholar 

  42. Mohan N, Karkra S, Rastogi A, et al. Living donor liver transplantation in maple syrup urine disease—case series and world's youngest domino liver donor and recipient. Pediatr Transplant. 2016;20(3):395–400.

    Article  CAS  PubMed  Google Scholar 

  43. Matsunami M, Fukuda A, Sasaki K, et al. Living donor domino liver transplantation using a maple syrup urine disease donor: a case series of three children—the first report from Japan. Pediatr Transplant. 2016;20(5):633–9.

    Article  PubMed  Google Scholar 

  44. Diaz VM, Camarena C, de la Vega A, et al. Liver transplantation for classical maple syrup urine disease: long-term follow-up. J Pediatr Gastroenterol Nutr. 2014;59(5):636–9.

    Article  CAS  PubMed  Google Scholar 

  45. Feier F, Schwartz IV, Benkert AR, et al. Living related versus deceased donor liver transplantation for maple syrup urine disease. Mol Genet Metab. 2016;117(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  46. Suryawan A, Hawes JW, Harris RA, et al. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr. 1998;68(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  47. Kamei A, Takashima S, Chan F, et al. Abnormal dendritic development in maple syrup urine disease. Pediatr Neurol. 1992;8(2):145–7.

    Article  CAS  PubMed  Google Scholar 

  48. Strauss KA, Mazariegos GV, Sindhi R, et al. Elective liver transplantation for the treatment of classical maple syrup urine disease. Am J Transplant. 2006;6(3):557–64.

    Article  CAS  PubMed  Google Scholar 

  49. Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132(Pt 4):903–18.

    PubMed  PubMed Central  Google Scholar 

  50. Al-Shamsi A, Baker A, Dhawan A, et al. Acute metabolic crises in maple syrup urine disease after liver transplantation from a related heterozygous living donor. JIMD Rep. 2016;30:59–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barshop BA, Khanna A. Domino hepatic transplantation in maple syrup urine disease. N Engl J Med. 2005;353(22):2410–1.

    Article  CAS  PubMed  Google Scholar 

  52. Khanna A, Hart M, Nyhan WL, et al. Domino liver transplantation in maple syrup urine disease. Liver Transpl. 2006;12(5):876–82.

    Article  PubMed  Google Scholar 

  53. Celik N, Squires RH, Vockley J, et al. Liver transplantation for maple syrup urine disease: a global domino effect. Pediatr Transplant. 2016;20(3):350–1.

    Article  PubMed  Google Scholar 

  54. Mayorandan S, Meyer U, Gokcay G, et al. Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis. 2014;9(107):014–0107.

    Google Scholar 

  55. McKiernan P. Liver transplantation for hereditary tyrosinaemia type 1 in the United Kingdom. Adv Exp Med Biol. 2017;959:85–91.

    Article  CAS  PubMed  Google Scholar 

  56. Vajro P, Strisciuglio P, Houssin D, et al. Correction of phenylketonuria after liver transplantation in a child with cirrhosis. N Engl J Med. 1993;329(5):363. https://doi.org/10.1056/NEJM199307293290517.

    Article  CAS  PubMed  Google Scholar 

  57. Crigler JF Jr, Najjar VA. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics. 1952;10(2):169–80.

    PubMed  Google Scholar 

  58. Sneitz N, Bakker CT, de Knegt RJ, et al. Crigler-Najjar syndrome in the Netherlands: identification of four novel UGT1A1 alleles, genotype-phenotype correlation, and functional analysis of 10 missense mutants. Hum Mutat. 2010;31(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  59. Sleisenger MH. Nonhemolytic unconjugated hyperbilirubinemia with hepatic glucuronyl transferase deficiency: a genetic study in four generations. Trans Assoc Am Physicians. 1967;80:259–66.

    CAS  PubMed  Google Scholar 

  60. Itoh S, Onishi S. Kinetic study of the photochemical changes of (ZZ)-bilirubin IX alpha bound to human serum albumin. Demonstration of (EZ)-bilirubin IX alpha as an intermediate in photochemical changes from (ZZ)-bilirubin IX alpha to (EZ)-cyclobilirubin IX alpha. Biochem J. 1985;226(1):251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lund HT, Jacobsen J. Influence of phototherapy on the biliary bilirubin excretion pattern in newborn infants with hyperbilirubinemia. J Pediatr. 1974;85(2):262–7.

    Article  CAS  PubMed  Google Scholar 

  62. Pett S, Mowat AP. Crigler-Najjar syndrome types I and II. Clinical experience—King's College Hospital 1972–1978. Phenobarbitone, phototherapy and liver transplantation. Mol Aspects Med. 1987;9(5):473–82.

    Article  CAS  PubMed  Google Scholar 

  63. Sokal EM, Silva ES, Hermans D, et al. Orthotopic liver transplantation for Crigler-Najjar type I disease in six children. Transplantation. 1995;60(10):1095–8.

    Article  CAS  PubMed  Google Scholar 

  64. van der Veere CN, Sinaasappel M, McDonagh AF, et al. Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology. 1996;24(2):311–5.

    Article  PubMed  Google Scholar 

  65. Fox IJ, Chowdhury JR, Kaufman SS, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;338(20):1422–6.

    Article  CAS  PubMed  Google Scholar 

  66. Ambrosino G, Varotto S, Strom SC, et al. Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transplant. 2005;14(2–3):151–7.

    Article  PubMed  Google Scholar 

  67. Ronzitti G, Bortolussi G, van Dijk R, et al. A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of Crigler-Najjar syndrome. Mol Ther Methods Clin Dev. 2016;3:16049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369(7):649–58.

    Article  CAS  PubMed  Google Scholar 

  69. Harambat J, van Stralen KJ, Espinosa L, et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin J Am Soc Nephrol. 2012;7(3):458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sasaki K, Sakamoto S, Uchida H, et al. Two-step transplantation for primary hyperoxaluria: a winning strategy to prevent progression of systemic oxalosis in early onset renal insufficiency cases. Pediatr Transplant. 2015;19(1):E1–6.

    Article  PubMed  Google Scholar 

  71. Compagnon P, Metzler P, Samuel D, et al. Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: the French experience. Liver Transpl. 2014;20(12):1475–85.

    PubMed  Google Scholar 

  72. Khorsandi SE, Samyn M, Hassan A, et al. An institutional experience of pre-emptive liver transplantation for pediatric primary hyperoxaluria type 1. Pediatr Transplant. 2016;20(4):523–9.

    Article  PubMed  Google Scholar 

  73. Kemper MJ, Nolkemper D, Rogiers X, et al. Preemptive liver transplantation in primary hyperoxaluria type 1: timing and preliminary results. J Nephrol. 1998;11(Suppl 1):46–8.

    PubMed  Google Scholar 

  74. Cochat P, Hulton SA, Acquaviva C, et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27(5):1729–36.

    Article  CAS  PubMed  Google Scholar 

  75. Kolker S, Valayannopoulos V, Burlina AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–74.

    Article  PubMed  CAS  Google Scholar 

  76. Shchelochkov OA, Carrillo N, Venditti C. Propionic acidemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. . Seattle: GeneReviews®; 1993.

    Google Scholar 

  77. Rajakumar A, Kaliamoorthy I, Reddy MS, et al. Anaesthetic considerations for liver transplantation in propionic acidemia. Indian J Anaesth. 2016;60(1):50–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kayler LK, Merion RM, Lee S, et al. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant. 2002;6(4):295–300.

    Article  PubMed  Google Scholar 

  79. Arrizza C, De Gottardi A, Foglia E, et al. Reversal of cardiomyopathy in propionic acidemia after liver transplantation: a 10-year follow-up. Transpl Int. 2015;28(12):1447–50.

    Article  PubMed  Google Scholar 

  80. Charbit-Henrion F, Lacaille F, McKiernan P, et al. Early and late complications after liver transplantation for propionic acidemia in children: a two centers study. Am J Transplant. 2015;15(3):786–91.

    Article  CAS  PubMed  Google Scholar 

  81. Vara R, Turner C, Mundy H, et al. Liver transplantation for propionic acidemia in children. Liver Transpl. 2011;17(6):661–7.

    Article  PubMed  Google Scholar 

  82. Sakamoto R, Nakamura K, Kido J, et al. Improvement in the prognosis and development of patients with methylmalonic acidemia after living donor liver transplant. Pediatr Transplant. 2016;20(8):1081–6.

    Article  CAS  PubMed  Google Scholar 

  83. Spada M, Calvo PL, Brunati A, et al. Early liver transplantation for neonatal-onset methylmalonic acidemia. Pediatrics. 2015;136(1):e252–6.

    Article  PubMed  Google Scholar 

  84. Kasahara M, Horikawa R, Tagawa M, et al. Current role of liver transplantation for methylmalonic acidemia: a review of the literature. Pediatr Transplant. 2006;10(8):943–7.

    Article  PubMed  Google Scholar 

  85. Niemi AK, Kim IK, Krueger CE, et al. Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr. 2015;166(6):1455–61.e1.

    Article  PubMed  Google Scholar 

  86. Sloan JL, Manoli I, Venditti CP. Liver or combined liver-kidney transplantation for patients with isolated methylmalonic acidemia: who and when? J Pediatr. 2015;166(6):1346–50.

    Article  PubMed  Google Scholar 

  87. Lerut JP, Ciccarelli O, Sempoux C, et al. Glycogenosis storage type I diseases and evolutive adenomatosis: an indication for liver transplantation. Transpl Int. 2003;16(12):879–84.

    Article  PubMed  Google Scholar 

  88. Reddy SK, Kishnani PS, Sullivan JA, et al. Resection of hepatocellular adenoma in patients with glycogen storage disease type Ia. J Hepatol. 2007;47(5):658–63.

    Article  CAS  PubMed  Google Scholar 

  89. Karaki C, Kasahara M, Sakamoto S, et al. Glycemic management in living donor liver transplantation for patients with glycogen storage disease type 1b. Pediatr Transplant. 2012;16(5):465–70.

    Article  CAS  PubMed  Google Scholar 

  90. Chiche L, David A, Adam R, et al. Liver transplantation for adenomatosis: European experience. Liver Transpl. 2016;22(4):516–26.

    Article  PubMed  Google Scholar 

  91. Reddy SK, Austin SL, Spencer-Manzon M, et al. Liver transplantation for glycogen storage disease type Ia. J Hepatol. 2009;51(3):483–90.

    Article  PubMed  Google Scholar 

  92. Davis MK, Weinstein DA. Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr Transplant. 2008;12(2):137–45.

    Article  PubMed  Google Scholar 

  93. Maya Aparicio AC, Bernal Bellido C, Tinoco Gonzalez J, et al. Fifteen years of follow-up of a liver transplant recipient with glycogen storage disease type Ia (Von Gierke disease). Transplant Proc. 2013;45(10):3668–9.

    Article  CAS  PubMed  Google Scholar 

  94. Oishi K, Arnon R, Wasserstein MP, et al. Liver transplantation for pediatric inherited metabolic disorders: considerations for indications, complications, and perioperative management. Pediatr Transplant. 2016;20(6):756–69.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cui H, Li F, Chen D, et al. Comprehensive next-generation sequence analyses of the entire mitochondrial genome reveal new insights into the molecular diagnosis of mitochondrial DNA disorders. Genet Med. 2013;15(5):388–94.

    Article  CAS  PubMed  Google Scholar 

  96. Dames S, Chou LS, Xiao Y, et al. The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders. J Mol Diagn. 2013;15(4):526–34.

    Article  CAS  PubMed  Google Scholar 

  97. Iwama I, Baba Y, Kagimoto S, et al. Case report of a successful liver transplantation for acute liver failure due to mitochondrial respiratory chain complex III deficiency. Transplant Proc. 2011;43(10):4025–8.

    Article  CAS  PubMed  Google Scholar 

  98. Sokal EM, Sokol R, Cormier V, et al. Liver transplantation in mitochondrial respiratory chain disorders. Eur J Pediatr. 1999;158(2):S81–4.

    Article  PubMed  Google Scholar 

  99. Dubern B, Broue P, Dubuisson C, et al. Orthotopic liver transplantation for mitochondrial respiratory chain disorders: a study of 5 children. Transplantation. 2001;71(5):633–7.

    Article  CAS  PubMed  Google Scholar 

  100. Durand P, Debray D, Mandel R, et al. Acute liver failure in infancy: a 14-year experience of a pediatric liver transplantation center. J Pediatr. 2001;139(6):871–6.

    Article  CAS  PubMed  Google Scholar 

  101. El-Hattab AW, Li F-Y, Schmitt E, et al. MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab. 2010;99(3):300–8.

    Article  CAS  PubMed  Google Scholar 

  102. Dimmock DP, Dunn JK, Feigenbaum A, et al. Abnormal neurological features predict poor survival and should preclude liver transplantation in patients with deoxyguanosine kinase deficiency. Liver Transpl. 2008;14(10):1480–5.

    Article  PubMed  Google Scholar 

  103. Lee WS, Sokol RJ. Mitochondrial hepatopathies: advances in genetics, therapeutic approaches, and outcomes. J Pediatr. 2013;163(4):942–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Parikh S, Karaa A, Goldstein A, et al. Solid organ transplantation in primary mitochondrial disease: proceed with caution. Mol Genet Metab. 2016;118(3):178–84.

    Article  CAS  PubMed  Google Scholar 

  105. Sasaki K, Sakamoto S, Uchida H, et al. Liver transplantation for mitochondrial respiratory chain disorder: a single-Center experience and excellent marker of differential diagnosis. Transplant Proc. 2017;49(5):1097–102.

    Article  CAS  PubMed  Google Scholar 

  106. Grabhorn E, Tsiakas K, Herden U, et al. Long-term outcomes after liver transplantation for deoxyguanosine kinase deficiency: a single-center experience and a review of the literature. Liver Transpl. 2014;20(4):464–72.

    Article  PubMed  Google Scholar 

  107. Pigeon N, Campeau PM, Cyr D, et al. Clinical heterogeneity in ethylmalonic encephalopathy. J Child Neurol. 2009;24(8):991–6.

    Article  PubMed  Google Scholar 

  108. Dionisi-Vici C, Diodato D, Torre G, et al. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease. Brain. 2016;139(Pt 4):1045–51.

    Article  PubMed  Google Scholar 

  109. Haack TB, Staufner C, Kopke MG, et al. Biallelic mutations in NBAS cause recurrent acute liver failure with onset in infancy. Am J Hum Genet. 2015;97(1):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Staufner C, Haack TB, Kopke MG, et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. J Inherit Metab Dis. 2016;39(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  111. Julier C, Nicolino M. Wolcott-Rallison syndrome. Orphanet J Rare Dis. 2010;5:29.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tzakis AG, Nunnelley MJ, Tekin A, et al. Liver, pancreas and kidney transplantation for the treatment of Wolcott-Rallison syndrome. Am J Transplant. 2015;15(2):565–7.

    Article  CAS  PubMed  Google Scholar 

  113. Rivera E, Gupta S, Chavers B, et al. En bloc multiorgan transplant (liver, pancreas, and kidney) for acute liver and renal failure in a patient with Wolcott-Rallison syndrome. Liver Transpl. 2016;22(3):371–4.

    Article  PubMed  Google Scholar 

  114. Elsabbagh AM, Hawksworth J, Khan KM, et al. World’s smallest combined en bloc liver-pancreas transplantation. Pediatr Transplant. 2018;22(1).

    Article  Google Scholar 

  115. Baric I. Inherited disorders in the conversion of methionine to homocysteine. J Inherit Metab Dis. 2009;32(4):459–71.

    Article  CAS  PubMed  Google Scholar 

  116. Strauss KA, Ferreira C, Bottiglieri T, et al. Liver transplantation for treatment of severe S-adenosylhomocysteine hydrolase deficiency. Mol Genet Metab. 2015;116(1–2):44–52.

    Article  CAS  PubMed  Google Scholar 

  117. Matsunami M, Shimozawa N, Fukuda A, et al. Living-donor liver transplantation from a heterozygous parent for infantile refsum disease. Pediatrics. 2016;137(6).

    Article  PubMed  Google Scholar 

  118. Khanna A, Gish R, Winter SC, et al. Successful domino liver transplantation from a patient with methylmalonic acidemia. JIMD Rep. 2016;25:87–94.

    Article  CAS  PubMed  Google Scholar 

  119. Popescu I, Dima SO. Domino liver transplantation: how far can we push the paradigm? Liver Transpl. 2012;18(1):22–8.

    Article  PubMed  Google Scholar 

  120. Stephenne X, Debray FG, Smets F, et al. Hepatocyte transplantation using the domino concept in a child with tetrabiopterin nonresponsive phenylketonuria. Cell Transplant. 2012;21(12):2765–70.

    Article  CAS  PubMed  Google Scholar 

  121. Rela M, Muiesan P, Vilca-Melendez H, et al. Auxiliary partial orthotopic liver transplantation for Crigler-Najjar syndrome type I. Ann Surg. 1999;229(4):565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rela M, Bharathan A, Palaniappan K, et al. Portal flow modulation in auxiliary partial orthotopic liver transplantation. Pediatr Transplant. 2015;19(3):255–60.

    Article  PubMed  Google Scholar 

  123. Reddy MS, Rajalingam R, Rela M. Revisiting APOLT for metabolic liver disease: a new look at an old idea. Transplantation. 2017;101(2):260–6.

    Article  PubMed  Google Scholar 

  124. Rela M, Battula N, Madanur M, et al. Auxiliary liver transplantation for propionic acidemia: a 10-year follow-up. Am J Transplant. 2007;7(9):2200–3.

    Article  CAS  PubMed  Google Scholar 

  125. Govil S, Shanmugam NP, Reddy MS, et al. A metabolic chimera: two defective genotypes make a normal phenotype. Liver Transpl. 2015 Nov;21(11):1453–4. https://doi.org/10.1002/lt.24202.

    Article  PubMed  Google Scholar 

  126. D’Antiga L, Colledan M. Surgical gene therapy by domino auxiliary liver transplantation. Liver Transpl. 2015;21(11):1338–9. https://doi.org/10.1002/lt.24326.

    Article  PubMed  Google Scholar 

  127. Iansante V, Mitry RR, Filippi C, et al. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res. 2018;83(1–2):232–40.

    Article  CAS  PubMed  Google Scholar 

  128. Muraca M, Gerunda G, Neri D, et al. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet. 2002;359(9303):317–8. https://doi.org/10.1016/S0140-6736(02)07529-3.

    Article  PubMed  Google Scholar 

  129. Horslen SP, McCowan TC, Goertzen TC, et al. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics. 2003;111(6 Pt 1):1262–7.

    Article  PubMed  Google Scholar 

  130. Sokal EM, Smets F, Bourgois A, et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation. 2003;76(4):735–8.

    Article  PubMed  Google Scholar 

  131. Mitry RR, Dhawan A, Hughes RD, et al. One liver, three recipients: segment IV from split-liver procedures as a source of hepatocytes for cell transplantation. Transplantation. 2004;77(10):1614–6.

    Article  PubMed  Google Scholar 

  132. Darwish AA, Sokal E, Stephenne X, et al. Permanent access to the portal system for cellular transplantation using an implantable port device. Liver Transpl. 2004;10(9):1213–5.

    Article  PubMed  Google Scholar 

  133. Dhawan A, Mitry RR, Hughes RD, et al. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation. 2004;78(12):1812–4.

    Article  PubMed  Google Scholar 

  134. Meyburg J, Opladen T, Spiekerkotter U, et al. Human heterologous liver cells transiently improve hyperammonemia and ureagenesis in individuals with severe urea cycle disorders. J Inherit Metab Dis. 2018;41(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  135. Morioka D, Takada Y, Kasahara M, et al. Living donor liver transplantation for noncirrhotic inheritable metabolic liver diseases: impact of the use of heterozygous donors. Transplantation. 2005;80(5):623–8.

    Article  PubMed  Google Scholar 

  136. Rahayatri TH, Uchida H, Sasaki K, et al. Hyperammonemia in ornithine transcarbamylase-deficient recipients following living donor liver transplantation from heterozygous carrier donors. Pediatr Transplant. 2017;21(1). doi: https://doi.org/10.1111/petr.12848.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Burlina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burlina, A., D’Antiga, L. (2019). Liver Transplantation for Inherited Metabolic Disorders. In: D'Antiga, L. (eds) Pediatric Hepatology and Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-96400-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96400-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96399-0

  • Online ISBN: 978-3-319-96400-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics