Skip to main content

A Dissociation Between Two Classes of Spatial Abilities in Elementary School Children

  • Conference paper
  • First Online:
Spatial Cognition XI (Spatial Cognition 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11034))

Included in the following conference series:

Abstract

This study investigates whether the abilities to mentally manipulate an imagined object (object manipulation abilities) and the abilities to coordinate perspectives of mental movement of the imagined self (egocentric perspective transformation abilities) are distinct classes of spatial abilities in elementary school children. We developed a paper-and-pencil test with measures of mental rotations and folding and a wide range of perspective taking tasks. 240 fourth graders were tested. By comparing different models in a confirmatory factor analysis, we found that there is a partial dissociation between object manipulation spatial abilities and perspective transformation abilities. The results specify the degree of overlap, and sex differences concerning the measures but not the underlying constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hegarty, M., Waller, D.: Individual differences in spatial abilities. In: Shah, P., Miyake, A. (eds.) The Cambridge handbook of Visuospatial Thinking, pp. 121–169. Cambridge University Press, New York (2005)

    Chapter  Google Scholar 

  2. Carroll, J.B.: Human Cognitive Abilities: A Survey of Factor-Analytic Studies. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  3. Andersen, L.: Visual-spatial ability: important in STEM, ignored in gifted education. Roeper Rev. 36(2), 114–121 (2014)

    Article  Google Scholar 

  4. Stieff, M., Uttal, D.: How much can spatial training improve STEM achievement? Educ. Psychol. Rev. 27(4), 607–615 (2015)

    Article  Google Scholar 

  5. Eliot, J.: Models of Psychological Space: Psychometric, Developmental, and Experimental Approaches. Springer, New York (1987)

    Book  Google Scholar 

  6. Kozhevnikov, M., Hegarty, M.: A dissociation between object manipulation spatial ability and spatial orientation ability. Mem. Cogn. 29(5), 745–756 (2001)

    Article  Google Scholar 

  7. Wang, R.F., Simons, D.J.: Active and passive scene recognition across views. Cognition 70(2), 191–210 (1999)

    Article  Google Scholar 

  8. Zacks, J.M., Michelon, P.: Transformations of visuospatial images. Behav. Cogn. Neurosci. Rev. 4(2), 96–118 (2005)

    Article  Google Scholar 

  9. Presson, C.C.: Strategies in spatial reasoning. J. Exp. Psychol. Learn. Mem. Cogn. 8(3), 243–251 (1982)

    Article  Google Scholar 

  10. Zacks, J.M., Mires, J., Tversky, B., Hazeltine, E.: Mental spatial transformations of objects and perspective. Spat. Cogn. Comput. 2(4), 315–332 (2000)

    Article  Google Scholar 

  11. Creem, S.H., Wraga, M., Proffitt, D.R.: Imagining physically impossible self-rotations: geometry is more important than gravity. Cognition 81(1), 41–64 (2001)

    Article  Google Scholar 

  12. Zacks, J.M., Rypma, B., Gabrieli, J.D., Tversky, B., Glover, G.H.: Imagined transformations of bodies: an fMRI investigation. Neuropsychologia 37(9), 1029–1040 (1999)

    Article  Google Scholar 

  13. Easton, R.D., Sholl, M.J.: Object-array structure, frames of reference, and retrieval of spatial knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 21(2), 483–500 (1995)

    Article  Google Scholar 

  14. Hegarty, M., Waller, D.: A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence 32(2), 175–191 (2004)

    Article  Google Scholar 

  15. Piaget, J., Inhelder, B.: The child’s conception of space: (Langdon, F.J. and Lunzer, J.L., Trans.). Norton (1948/1956)

    Google Scholar 

  16. Piaget, J., Inhelder, B.: Mental imagery in the child; a study of the development of imaginal representation: P.A. Chilton, Trans. Basic Books, New York (1966/1971)

    Google Scholar 

  17. Huttenlocher, J., Presson, C.C.: Mental rotation and the perspective problem. Cogn. Psychol. 4(2), 277–299 (1973)

    Article  Google Scholar 

  18. Huttenlocher, J., Presson, C.C.: The coding and transformation of spatial information. Cogn. Psychol. 11(3), 375–394 (1979)

    Article  Google Scholar 

  19. Caeyenberghs, K., Tsoupas, J., Wilson, P.H., Smits-Engelsman, B.C.M.: Motor imagery development in primary school children. Dev. Neuropsychol. 34(1), 103–121 (2009)

    Article  Google Scholar 

  20. Crescentini, C., Fabbro, F., Urgesi, C.: Mental spatial transformations of objects and bodies: different developmental trajectories in children from 7 to 11 years of age. Dev. Psychol. 50(2), 370–383 (2014)

    Article  Google Scholar 

  21. Vander Heyden, K.M., Huizinga, M., Kan, K.J., Jolles, J.: A developmental perspective on spatial reasoning: dissociating object transformation from viewer transformation ability. Cogn. Dev. 38, 63–74 (2016)

    Article  Google Scholar 

  22. Linn, M.C., Petersen, A.C.: Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 56(6), 1479–1498 (1985)

    Article  Google Scholar 

  23. Voyer, D., Voyer, S., Bryden, M.P.: Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol. Bull. 117(2), 250–270 (1995)

    Article  Google Scholar 

  24. Johnson, E.S., Meade, A.C.: Developmental patterns of spatial ability: an early sex difference. Child Dev. 58, 725–740 (1987)

    Article  Google Scholar 

  25. Quinn, P.C., Liben, L.S.: A sex difference in mental rotation in young infants. Psychol. Sci. 19(11), 1067–1070 (2008)

    Article  Google Scholar 

  26. Levine, S.C., Huttenlocher, J., Taylor, A., Langrock, A.: Early sex differences in spatial skill. Dev. Psychol. 35(4), 940–949 (1999)

    Article  Google Scholar 

  27. Kerns, K.A., Berenbaum, S.A.: Sex differences in spatial ability in children. Behav. Genet. 21(4), 383–396 (1991)

    Article  Google Scholar 

  28. Vederhus, L., Krekling, S.: Sex differences in visual spatial ability in 9-year-old children. Intelligence 23(1), 33–43 (1996)

    Article  Google Scholar 

  29. Frick, A., Möhring, W., Newcombe, N.S.: Picturing perspectives: development of perspective-taking abilities in 4- to 8-year-olds. Front. Psychol. 5, 386 (2014)

    Article  Google Scholar 

  30. Tarampi, M.R., Heydari, N., Hegarty, M.: A tale of two types of perspective taking: sex differences in spatial ability. Psychol. Sci. 27(11), 1507–1516 (2016)

    Article  Google Scholar 

  31. Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Press, New York (2015)

    MATH  Google Scholar 

  32. Ekstrom, R.B., French, J.W., Harman, H.H., Dermen, D.: Manual for Kit of Factor-Referenced Cognitive Tests. Educational Testing Service, Princeton (1976)

    Google Scholar 

  33. Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Skills 47(2), 599–604 (1978)

    Article  Google Scholar 

  34. de Lange, J.: Geometry for all or: no geometry at all. Zentralblatt für Didaktik der Mathematik 3, 90–97 (1984)

    Google Scholar 

  35. Guilford, J.P., Zimmerman, W.S.: The Guilford-Zimmerman aptitude survey. J. Appl. Psychol. 32(1), 24–34 (1948)

    Article  Google Scholar 

  36. West, S.G., Finch, J.F., Curran, P.J.: Structural equation models with nonnormal variables: problems and remedies. In: Hoyle, R.H. (ed.) Structural Equation Modeling: Concepts, Issues, and Applications, pp. 56–75. Sage, Thousand Oaks (1995)

    Google Scholar 

  37. Muthén, L.K., Muthén, B.O.: Mplus User’s Guide: Statistical Analysis with Latent Variables: User’s Guide: Computer Software Manual. Muthén & Muthén, Los Angeles (2004)

    Google Scholar 

  38. Geiser, C.: Data Analysis with Mplus. Guilford Press, New York (2012)

    Google Scholar 

  39. Rosseel, Y.: Lavaan: an R package for structural equation modeling. J. Stat. Softw. 48(2), 1–36 (2012)

    Article  Google Scholar 

  40. Hu, L.T., Bentler, P.M.: Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model.: Multidisc. J. 6(1), 1–55 (1999)

    Article  Google Scholar 

  41. McDonald, R.P.: Test Theory: A Unified Treatment. Erlbaum, Mahwah (1999)

    Google Scholar 

  42. Olkin, I., Hedges, L.V., Hedges, L.V. (eds.): Statistical Methods for Meta-Analysis. Academic Press, New York (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathleen Heil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heil, C. (2018). A Dissociation Between Two Classes of Spatial Abilities in Elementary School Children. In: Creem-Regehr, S., Schöning, J., Klippel, A. (eds) Spatial Cognition XI. Spatial Cognition 2018. Lecture Notes in Computer Science(), vol 11034. Springer, Cham. https://doi.org/10.1007/978-3-319-96385-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96385-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96384-6

  • Online ISBN: 978-3-319-96385-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics