Skip to main content

Thermoelectric Properties of Silicon-Germanium Alloys

  • Chapter
  • First Online:
Thermoelectrics

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

In this chapter, SiGe nanocomposites are investigated for various parameters, such as thermal conductivity, electrical conductivity, and Seebeck coefficient, which determine their applications in thermoelectrics. Grain boundaries in nanocomposites can scatter phonons, when their mean free path is longer than the grain size. Mean free path of electrons is usually shorter than the grain size of nanocomposites, so that the electrical conductivities of nanocomposites are not expected to change significantly. However, the results show that, at the nanoscale, the properties related to electron transport are affected. Based on the calculations of the electronic and thermal properties in the literature, studies show that an enhancement in ZT for n-type and p-type SiGe alloys is mostly due to the reduction in the thermal conductivity. Such a reduction is due to both the alloying effect and increased phonon interface scattering at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.F. Ioffe, E.K. Iordanishvili, T.S. Staviskaya, A. Gelbtuch, Semiconductor Thermoelements and Thermoelectric Cooling (InfoSearch, London, 1957)

    Google ScholarĀ 

  2. A.F. Ioffe, L.S. Stilbans, E.K. Iordanishvili, T.S. Stavitskaya, Termoelektricheskoe Okhlazhdenie (U.S.S.R. Academy of Sciences, Moscow-Leningrad, 1949)

    Google ScholarĀ 

  3. V. Siklitsky, Silicon Germanium (May 2012). http://www.ioffe.rssi.ru

  4. J. Snyder, Thermoelectrics (Dec 2014 and references therein). http://www.its.caltech.edu/~jsnyder

  5. H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)

    ArticleĀ  Google ScholarĀ 

  6. D.M. Rowe, CRC Handbook on Thermoelectrics (CRC Press, Danvers, 1995)

    BookĀ  Google ScholarĀ 

  7. M.C. Steele, F.D. Rosi, J. Appl. Phys. 29, 1517 (1958)

    ArticleĀ  Google ScholarĀ 

  8. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105ā€“114 (2008)

    ArticleĀ  Google ScholarĀ 

  9. J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, D.S. Beers, J. Appl. Phys. 35, 2899 (1964)

    ArticleĀ  Google ScholarĀ 

  10. J.P. Dismukes, L. Ekstrom, R.J. Pfaff, J. Phys. Chem. 68(10), 3021ā€“3027 (1964)

    ArticleĀ  Google ScholarĀ 

  11. D. Thompson, Thermoelectric Properties of Silicon Germanium: An In-Depth Study the Reduction of Lattice Thermal Conductivity, PhD Dissertation, Clemson University, 2012

    Google ScholarĀ 

  12. J.-P. Fleurial et al., Improved n-type SiGe/GaP thermoelectric materials, in Proceedings of the Eighth Symposium on Space Nuclear Power Systems (1991), p. 451

    Google ScholarĀ 

  13. H.J. Goldsmid, A.W. Penn, Boundary scattering of phonons in solid solutions. Phys. Lett. A 27, 523 (1968)

    ArticleĀ  Google ScholarĀ 

  14. J.E. Parrot, J. Phys. C Solid State Phys. 2, 147 (1969)

    ArticleĀ  Google ScholarĀ 

  15. D.M. Rowe et al., J. Phys. C. Solid State Phys. 11, 1787 (1978)

    ArticleĀ  Google ScholarĀ 

  16. D.M. Rowe, R.W. Bunce, J. Phys. D. Appl. Phys. 10, 941 (1977)

    ArticleĀ  Google ScholarĀ 

  17. R.A. Lefever, G.L. McVay, R.J. Baughman, Part Iā€“III. Mater. Res. Bull. 9(7), 685ā€“692, 735ā€“744, 863ā€“872 (1974)

    ArticleĀ  Google ScholarĀ 

  18. C. Vining, J. Appl. Phys. 69, 331 (1991)

    ArticleĀ  Google ScholarĀ 

  19. J.W. Vandersande, C. Wood, S. Draper, Mater. Res. Soc. Symp. Proc. 97(97), 347 (1987)

    ArticleĀ  Google ScholarĀ 

  20. B.A. Cook et al., Proc. Intersoc. Energy Convers. Eng. Conf., vol 2 (1989), p. 693

    Google ScholarĀ 

  21. B.A. Cook, J.L. Harringa, S.H. Han, B.J. Beaudry, J. Appl. Phys. 72(4), 1423ā€“1428 (1992)

    ArticleĀ  Google ScholarĀ 

  22. B.A. Cook et al., Mater. Res. Soc. Proc. 234, 111 (1991)

    ArticleĀ  Google ScholarĀ 

  23. B.A. Cook et al., Proceedings of the Eighth Symposium on Space Nuclear Power Systems (1991), p. 431

    Google ScholarĀ 

  24. B.A. Cook et al., Proceedings of the 11th International Conference on Thermoelectric Energy Conversion (1992), p. 28

    Google ScholarĀ 

  25. A. Balandin et al., Phys. Rev. B 66, 245319 (2002)

    ArticleĀ  Google ScholarĀ 

  26. A. Balandin et al., Appl. Phys. Lett. 82(3), 415 (2003)

    ArticleĀ  Google ScholarĀ 

  27. M. Lee, R. Venkatasubramanian, Appl. Phys. Lett. 053112, 92 (2008)

    Google ScholarĀ 

  28. L. Vegard, Die konstitution der mischkristalle und die raumfllung der atome. Z. Phys. 5, 17 (1921)

    ArticleĀ  Google ScholarĀ 

  29. C.B. Vining, W. Laskow, J.O. Hanson, R.R. Van der Beck, P.D. Gorsuch, J. Appl. Phys. 69(8), 4333ā€“4340 (1991)

    ArticleĀ  Google ScholarĀ 

  30. X.W. Wang et al., Appl. Phys. Lett. 93, 193121 (2008)

    ArticleĀ  Google ScholarĀ 

  31. G. Joshi et al., Nano Lett. 8(12), 4670ā€“4674 (2008)

    ArticleĀ  Google ScholarĀ 

  32. G.H. Zhu et al., Phys. Rev. Lett. 102, 196803 (2009)

    ArticleĀ  Google ScholarĀ 

  33. C. Bera et al., J. Appl. Phys. 108, 124306 (2010)

    ArticleĀ  Google ScholarĀ 

  34. S.K. Bux et al., Adv. Funct. Mater. 19, 24452452 (2009)

    ArticleĀ  Google ScholarĀ 

  35. R. Crowe, Industry leaders: Sun shotā€™s $1 per watt goal feasible (May 2012). http://www.renewableenergyworld.com

  36. B. Yu et al., Nano Lett. 12, 2077ā€“2082 (2012)

    ArticleĀ  Google ScholarĀ 

  37. G. Chen, Recent Trends in Thermoelectric Materials Research III, vol 71 (Academic Press, San Diego, CA, 2001), pp. 203ā€“259

    BookĀ  Google ScholarĀ 

  38. J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys. 98, 063703 (2005)

    ArticleĀ  Google ScholarĀ 

  39. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005)

    ArticleĀ  Google ScholarĀ 

  40. A. Minnich, G. Chen, Appl. Phys. Lett. 91, 073105 (2007)

    ArticleĀ  Google ScholarĀ 

  41. R.G. Yang, G. Chen, M.S. Dresselhaus, Nano Lett. 5, 1111ā€“1115 (2005)

    ArticleĀ  Google ScholarĀ 

  42. G.A. Slack, M.A. Hussain, J. Appl. Phys. 70, 2694 (1991)

    ArticleĀ  Google ScholarĀ 

  43. E.H. Sondheimer, Adv. Phys. 1, 1 (1952). and references therein

    ArticleĀ  Google ScholarĀ 

  44. A.F. Mayadas, M. Shatzkes, Phys. Rev. B 1, 1382 (1970)

    ArticleĀ  Google ScholarĀ 

  45. H. Lee, D.Z. Wang, M.Y. Tang, Z.F. Ren, P. Gogna, J.-P. Fleurial, M.S. Dresselhaus, G. Chen, in International Conference on Thermoelectrics (Clemson, SC, 2005)

    Google ScholarĀ 

  46. N.S. Lidorenko, O.M. Narva, L.D. Dudkin, R.S. Erofeev, Inorg. Mater. 6, 1853 (1970)

    Google ScholarĀ 

  47. D. Song, G. Chen, Appl. Phys. Lett. 84, 687ā€“689 (2004)

    ArticleĀ  Google ScholarĀ 

  48. D.W. Song, W.N. Shen, B. Dunn, C.D. Moore, M.S. Goorsky, T. Radetic, R. Gronsky, G. Chen, Appl. Phys. Lett. 84, 1883ā€“1885 (2004)

    ArticleĀ  Google ScholarĀ 

  49. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford/New York, 2005)

    Google ScholarĀ 

  50. M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, 2000)

    BookĀ  Google ScholarĀ 

  51. H. Lee, D. Vashaee, D.Z. Wang, M.S. Dresselhaus, Z.F. Ren, G. Chen, Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107, 094308 (2010)

    ArticleĀ  Google ScholarĀ 

  52. H. Lee, Modeling and characterization of thermoelectric properties of SiGe nanocomposites, PhD Thesis, Massachusetts Institute of Technology, May 2009

    Google ScholarĀ 

  53. N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Brooks Cole, Belmont, 1976)

    MATHĀ  Google ScholarĀ 

  54. B.A. Cook, J.L. Harringa, S.H. Han, C.B. Vining, J. Appl. Phys. 78, 5474 (1995)

    ArticleĀ  Google ScholarĀ 

  55. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    ArticleĀ  Google ScholarĀ 

  56. A. Samarelli, L. Ferre, L. Lin, Prospects for SiGe thermoelectric generators (April 2014). www.elsevier.com/locate/sse

  57. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 5, 5147ā€“5162 (2012)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravindra, N.M., Jariwala, B., BaƱobre, A., Maske, A. (2019). Thermoelectric Properties of Silicon-Germanium Alloys. In: Thermoelectrics. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-96341-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96341-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96339-6

  • Online ISBN: 978-3-319-96341-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics