Skip to main content

Thermoelectrics: Physical Mechanisms

  • Chapter
  • First Online:
Thermoelectrics

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

Direct energy conversion from thermal to electrical energy, based on thermoelectric effect, is attractive for potential applications in waste heat recovery and environmentally friendly refrigeration. The energy conversion efficiency of thermoelectric devices is related to the thermoelectric Figure of Merit ZT, which is proportional to the electrical conductivity, the square of the Seebeck coefficient, temperature, and the inverse of the thermal conductivity. Currently, the low ZT values of available materials restrict the large-scale applications of this technology. Recently, however, significant enhancements in ZT have been reported in nanostructures such as superlattices mainly due to their low thermal conductivities. According to the studies on heat transfer mechanisms in nanostructures, the reduced thermal conductivity of nanostructures is mainly attributed to the increased scattering of phonons at the interfaces. Based on this idea, nanocomposites are also expected to have a lower thermal conductivity than their bulk counterparts of the same chemical configuration. Nanocomposites are materials with dimensions of less than 100 nm. They can be fabricated at low cost by mixing nano-sized particles followed by consolidation of nano-sized powders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Energy and Environment Report, European Environment Agency, ISBN 978-92-9167-980-5; ISSN 1725-9177; DOI 10.2800/10548, EEA, Copenhagen, 2008

    Google Scholar 

  2. Efficient Electrical Energy Transmission and Distribution; International Electrotechnical Commission, 2007, https://books.google.com/books?id=IaQEMwEACAAJ, Geneva, Switzerland

  3. J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011). https://doi.org/10.1039/C0JM02755C

    Article  Google Scholar 

  4. B.R. Nag, Theory of Electrical Transport in Semiconductors (Pergamon Press, New York, 1972)

    Google Scholar 

  5. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)

    Book  Google Scholar 

  6. Th.J. Seebeck “Magnetische Polarisation der Metalle und Erze Durch Temperatur-Differenz” 1822-23 in Ostwald’s Klassiker der Exakten Wissenshaften Nr. 70. Seebeck Biography 1. Seebeck Biography 2, 1895

    Google Scholar 

  7. L. Sebastien, First-principles study of the electronic and thermoelectric properties of Ca3Co4O9, MS Thesis, Universite de Liege, 2013

    Google Scholar 

  8. C. Bera. Thermoelectric properties of nanocomposite materials. Engineering Sciences, Ecole Centrale Paris, 2010. English. <NNT: 2010ECAP0027>

    Google Scholar 

  9. G.A. Slack, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (Ed), (CRC Press, Boca Raton, 1995)

    Google Scholar 

  10. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  Google Scholar 

  11. D.I. Bilc, P. Ghosez, Phys. Rev. B 83, 205204 (2011)

    Article  Google Scholar 

  12. S. Krishnamurthy, A. Sher, A.-B. Chen, Phys. Rev. B 33(2), 1026 (1986)

    Article  Google Scholar 

  13. P. Ghosez, First-principles study of the dielectric and dynamical properties of barium titanate, PhD Thesis, Universite Catholique de Louvain, 1997

    Google Scholar 

  14. M. Martín-González, O. Caballero-Calero, P. Díaz-Chao, Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field, www.elsevier.com/locate/rser, September 2012

  15. L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Appl. Phys. Lett. 63(23), 3230 (1993)

    Article  Google Scholar 

  16. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131, 40, (1992)

    Google Scholar 

  17. The Mineral Sphalerite, http://www.minerals.net/mineral/sphalerite.aspx

  18. Structure of Solids, Ionic Solids, The Wurtzite Structure, http://minerva.mlib.cnr.it/mod/book/view.php?id=269&chapterid=106

  19. A.R. West, Basic Solid State Chemistry (Wiley, Chichester, 1988), p. 238

    Google Scholar 

  20. Rock Salt Structure, http://chemistrytextbookcrawl.blogspot.com/2012/08/rock-salt-structure.html

  21. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  22. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004)

    Book  Google Scholar 

  23. J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 2001)

    Book  Google Scholar 

  24. D. Lacroix, K. Joulain, D. Lemonnier, Phys. Rev. B 72(6), 064305-1–064305-11 (2005)

    Google Scholar 

  25. C. Kittel, H. Kroemer, Thermal Physics (W. H. Freeman, New York, 1980)

    Google Scholar 

  26. C.M. Bhandari, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)

    Google Scholar 

  27. H.J. Goldsmid, The Physics of Thermoelectric Energy Conversion, IOP ebooks (Mogan & Claypool Publishers, San Rafael, 2017)

    Book  Google Scholar 

  28. J. Singleton, Band Theory and Electronic Properties of Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  29. W. Jones, N.H. March, Theoretical Solid State Physics (Wiley- Interscience, London, 1973)

    Google Scholar 

  30. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1964)

    MATH  Google Scholar 

  31. T.S. Hutchison, D.C. Baird, The Physics of Engineering Solids (Wiley, New York, 1963)

    Google Scholar 

  32. D. Thompson, Thermoelectric Properties of Silicon Germanium: An In-depth Study to the Reduction of Lattice Thermal Conductivity, PhD Dissertation, Clemson University, 2012

    Google Scholar 

  33. G.A. Slack, in Solid State Physics, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Eds), vol. 34, (Academic Press, New York, 1979)

    Google Scholar 

  34. P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R 67(19), 19–63 (2010)

    Article  Google Scholar 

  35. M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. 133, A1143–A1152 (1964)

    Article  Google Scholar 

  36. D.M. Rowe Ed. Introduction, CRC Handbook of Thermoelectrics, 1995

    Google Scholar 

  37. H. Alam, S. Ramakrishna, Nano Energy 2(2), 190–212 (2013)

    Article  Google Scholar 

  38. M.S. Dresselhaus, G. Chen, M.Y. Tang, G. Yang, H. Lee, D. Wang, Z. Ren, P. Jean-, P.G. Fleurial, Adv. Mater. 19(8), 1043–1053 (2007)

    Article  Google Scholar 

  39. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413(11), 597–602 (2001)

    Article  Google Scholar 

  40. R. Fletcher, M. Tsaousidou, P.T. Coleridge, Y. Feng, Z.R. Wasilewski, Phys. E. 12, 478–481 (2002)

    Article  Google Scholar 

  41. A. Balandin, K.L. Wang, J. Appl. Phys. 84(11), 6149–6153 (1998)

    Article  Google Scholar 

  42. H. Bottner, G. Chen, R. Venkatasubramanian, MRS Bull. 31, 211–217 (2006)

    Google Scholar 

  43. R. Venkatasubramanian, Phys. Rev. B 61, 3091–3097 (2000)

    Article  Google Scholar 

  44. C. Gould, N. Shammas, A review of thermoelectric MEMS devices for micro power generation, heating and cooling applications, ed. by K. Takahata (Source: Micro Electronic and Mechanical Systems, 2009), ISBN 978–953, 307–027

    Google Scholar 

  45. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 5, 5147–5162 (2012)

    Article  Google Scholar 

  46. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466–479 (2009)

    Article  Google Scholar 

  47. D. Moore, Novel ZnS nanostructures – synthesis, growth mechanism and application, Georgia Institute of Technology, Oct 2006

    Google Scholar 

  48. R. Tubino, Lattice dynamics and spectroscopic properties by a valence force potential of diamond like crystals: C, SiGe, and Sn. J Chem Phys 56(3), 1022 (1972)

    Article  Google Scholar 

  49. S.T. Huxtable, Heat transport in super-lattices and nanowire arrays (University of California, Berkeley, 2002)

    Google Scholar 

  50. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat Nanotechnol 8, 471–473 (2013). https://doi.org/10.1038/nnano.2013

    Article  Google Scholar 

  51. H. Alam, & S. Ramakrishna, A review on the enhancement of Figure of Merit from bulk to nano-thermoelectric materials, Oct 2012, pp. 203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravindra, N.M., Jariwala, B., Bañobre, A., Maske, A. (2019). Thermoelectrics: Physical Mechanisms. In: Thermoelectrics. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-96341-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96341-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96339-6

  • Online ISBN: 978-3-319-96341-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics