Skip to main content

Abstract

In this concluding chapter we describe our view how different kinds of information are integrated in order to arrive at causal explanation in population health science. In particular, such information comes from individuals and populations (target), from epidemiology and the bench sciences (method), and from observation and experiment (manipulation). We discuss recent “systems” approaches in biology, medicine, and epidemiology in the section on “method” and the question what it is about “manipulation” that convinces many of its capability to support causal inference. In the final section, we look at complexity versus simplicity and suggest that the simplification inherent in epidemiological evidence generation may be an asset, not a liability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We prefer using the term evidence integration to the more common knowledge integration and information integration. Knowledge integration has been defined as “the process of synthesizing multiple knowledge models (or representations) into a common model (representation). Compared to information integration, […], knowledge integration focuses more on synthesizing the understanding of a given subject from different perspectives.” (Wikipedia, accessed 6/19/2012). In keeping with our DIEK-model (see Sect. 6.3), this chapter is about evidence, not so much about information or knowledge.

  2. 2.

    https://gradepro.org/.

  3. 3.

    available at http://gdt.guidelinedevelopment.org/app/handbook/handbook.html.

  4. 4.

    http://www.who.int/hiv/pub/mtct/antiretroviral2010/en/.

References

  1. Eriksson C. Learning and knowledge-production for public health: a review of approaches to evidence-based public health. Scand J Public Health. 2000;28(4):298–308.

    CAS  PubMed  Google Scholar 

  2. Education, T.I.U.f.H.P. The evidence of health promotion effectiveness. Shaping public health in a New Europe. Brussels: European Commission DGV; 1999.

    Google Scholar 

  3. Braveman P. Combining forces against inequity and poverty rather than splitting hairs. Bull World Health Organ. 2000;78(1):78–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Auffray C, et al. From functional genomics to systems biology: concepts and practices. C R Biol. 2003;326(10–11):879–92.

    CAS  PubMed  Google Scholar 

  5. Hood L. Systems biology: integrating technology, biology, and computation. Mech Ageing Dev. 2003;124(1):9–16.

    PubMed  Google Scholar 

  6. Kitano H. Computational systems biology. Nature. 2002;420(6912):206–10.

    CAS  PubMed  Google Scholar 

  7. Wolkenhauer O. Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform. 2001;2(3):258–70.

    CAS  PubMed  Google Scholar 

  8. Wolkenhauer O, et al. The road from systems biology to systems medicine. Pediatr Res. 2013;73(4 Pt 2):502–7.

    Article  PubMed  Google Scholar 

  9. Apweiler R, et al. Whither systems medicine? Exp Mol Med. 2018;50(3):e453.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and healthcare. Genome Med. 2009;1(1):2.

    PubMed  PubMed Central  Google Scholar 

  11. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol. 2012;29(6):613–24.

    Article  CAS  PubMed  Google Scholar 

  12. Dammann O, et al. Systems epidemiology: what’s in a name? Online J Public Health Inform. 2014;6(3):e198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Comas I, Gagneux S. A role for systems epidemiology in tuberculosis research. Trends Microbiol. 2011;19(10):492–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cornelis MC, Hu FB. Systems epidemiology: a new direction in nutrition and metabolic disease research. Curr Nutr Rep. 2013;2(4):225–35.

    Google Scholar 

  15. Joffe M, et al. Causal diagrams in systems epidemiology. Emerg Themes Epidemiol. 2012;9(1):1.

    PubMed  PubMed Central  Google Scholar 

  16. Lund E, Dumeaux V. Systems epidemiology in cancer. Cancer Epidemiol Biomark Prev. 2008;17(11):2954–7.

    Google Scholar 

  17. Engel GL. The need for a new medical model: a challenge for biomedicine. Science. 1977;196(4286):129–36.

    CAS  PubMed  Google Scholar 

  18. Engel GL. The clinical application of the biopsychosocial model. Am J Psychiatry. 1980;137(5):535–44.

    CAS  PubMed  Google Scholar 

  19. Fava GA, Sonino N. The biopsychosocial model thirty years later. Psychother Psychosom. 2008;77(1):1–2.

    PubMed  Google Scholar 

  20. Bertalanffy LV. General system theory; foundations, development, applications. New York: George Braziller; 1968. p. xv, 289 p.

    Google Scholar 

  21. Clarke B, et al. Mechanisms and the evidence hierarchy. Topoi; 2013.

    Google Scholar 

  22. Machamer PK, Darden L, Craver CF. Thinking about mechanisms. Philos Sci. 2000;67:1–25.

    Google Scholar 

  23. Bechtel W. Mechanism and biological explanation. Philos Sci. 2011;78:533–57.

    Google Scholar 

  24. Wolkenhauer O. Why model? Front Physiol. 2014;5:21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Epstein JM. Why model? J Artif Soc Soc Simul. 2008;11(4):12.

    Google Scholar 

  26. Andrade MA, Sander C. Bioinformatics: from genome data to biological knowledge. Curr Opin Biotechnol. 1997;8(6):675–83.

    CAS  PubMed  Google Scholar 

  27. Thomas DC. The need for a systematic approach to complex pathways in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14(3):557–9.

    Google Scholar 

  28. Baxevanis AD, Ouellette BF. Bioinformatics. New York: Wiley; 2001.

    Google Scholar 

  29. Quackenbush J. Microarray analysis and tumor classification. N Engl J Med. 2006;354(23):2463–72.

    CAS  PubMed  Google Scholar 

  30. Kohane IS, Butte A. Bioinformatics. In: Elston R, Olson J, Palmer L, editors. Biostatistical genetics and genetic epidemiology. Chichester: Wiley; 2002.

    Google Scholar 

  31. Wiley HS, Shvartsman SY, Lauffenburger DA. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 2003;13(1):43–50.

    CAS  PubMed  Google Scholar 

  32. Oda K, et al. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005 0010.

    PubMed  PubMed Central  Google Scholar 

  33. Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol. 2006;2:2006 0015.

    PubMed  PubMed Central  Google Scholar 

  34. Noble D. Modeling the heart. Physiology (Bethesda). 2004;19:191–7.

    CAS  Google Scholar 

  35. Federoff HJ, Gostin LO. Evolving from reductionism to holism: is there a future for systems medicine? JAMA. 2009;302(9):994–6.

    CAS  PubMed  Google Scholar 

  36. Hood L, Balling R, Auffray C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J. 2012;7(8):992–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rehm M, et al. Wither systems medicine? Exp Mol Med. (in press).

    Google Scholar 

  38. Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med. 2012;271(2):111–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bates S. Progress towards personalized medicine. Drug Discov Today. 2010;15(3–4):115–20.

    PubMed  Google Scholar 

  40. Chan IS, Ginsburg GS. Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet. 2011;12:217–44.

    CAS  PubMed  Google Scholar 

  41. Nersting J, Borst L, Schmiegelow K. Challenges in implementing individualized medicine illustrated by antimetabolite therapy of childhood acute lymphoblastic leukemia. Clin Proteomics. 2011;8(1):8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins FS, et al. A vision for the future of genomics research. Nature. 2003;422(6934):835–47.

    CAS  PubMed  Google Scholar 

  43. Frenk J. The new public health. Annu Rev Public Health. 1993;14:469–90.

    CAS  PubMed  Google Scholar 

  44. Schulte PA. A conceptual and historical framework for molecular epidemiology. In: Schulte PA, Perera FP, editors. Molecular epidemiology – principles and practices. San Diego: Academic; 1993. p. 3–44.

    Google Scholar 

  45. Wilcox AJ. Molecular epidemiology: collision of two cultures. Epidemiology. 1995;6(5):561–2.

    CAS  PubMed  Google Scholar 

  46. Grandjean P. Biomarkers in epidemiology. Clin Chem. 1995;41(12 Pt 2):1800–3.

    CAS  PubMed  Google Scholar 

  47. Khoury MJ, Beaty TH, Cohen BH. Fundamentals of genetic epidemiology. Oxford: Oxford University Press; 1993.

    Google Scholar 

  48. Ioannidis JP, et al. A network of investigator networks in human genome epidemiology. Am J Epidemiol. 2005;162(4):302–4.

    PubMed  Google Scholar 

  49. Ioannidis JP, et al. A road map for efficient and reliable human genome epidemiology. Nat Genet. 2006;38(1):3–5.

    CAS  PubMed  Google Scholar 

  50. Jablonka E. Epigenetic epidemiology. Int J Epidemiol. 2004;33(5):929–35.

    PubMed  Google Scholar 

  51. Schulte PA, Perera FP. Molecular epidemiology. Principles and practices. San Diego: Academic; 1993.

    Google Scholar 

  52. Khoury MJ, et al., editors. Human genome epidemiology. Oxford: Oxford University Press; 2010.

    Google Scholar 

  53. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 363(2):166–76.

    CAS  PubMed  Google Scholar 

  54. Hunter DJ, Kraft P. Drinking from the fire hose – statistical issues in genomewide association studies. N Engl J Med. 2007;357(5):436–9.

    CAS  PubMed  Google Scholar 

  55. Venter JC, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    CAS  PubMed  Google Scholar 

  56. McPherson JD, et al. A physical map of the human genome. Nature. 2001;409(6822):934–41.

    CAS  PubMed  Google Scholar 

  57. McKusick VA, Ruddle FH. A new discipline, a new name, a new journal. Genomics. 1987;1(1):1–2.

    Google Scholar 

  58. McKusick VA. Genomics: structural and functional studies of genomes. Genomics. 1997;45(2):244–9.

    CAS  PubMed  Google Scholar 

  59. Hoheisel JD. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. 2006;7(3):200–10.

    CAS  PubMed  Google Scholar 

  60. Kronick MN. Creation of the whole human genome microarray. Expert Rev Proteomics. 2004;1(1):19–28.

    CAS  PubMed  Google Scholar 

  61. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11):1853–61.

    CAS  PubMed  Google Scholar 

  62. Schulz-Knappe P, et al. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screen. 2001;4(2):207–17.

    CAS  PubMed  Google Scholar 

  63. Hegde PS, White IR, Debouck C. Interplay of transcriptomics and proteomics. Curr Opin Biotechnol. 2003;14(6):647–51.

    CAS  PubMed  Google Scholar 

  64. Nobeli I, Thornton JM. A bioinformatician’s view of the metabolome. BioEssays. 2006;28(5):534–45.

    CAS  PubMed  Google Scholar 

  65. Xiong M, et al. A systems biology approach to genetic studies of complex diseases. FEBS Lett. 2005;579(24):5325–32.

    CAS  PubMed  Google Scholar 

  66. Ulrich CM, Nijhout HF, Reed MC. Mathematical modeling: epidemiology meets systems biology. Cancer Epidemiol Biomark Prev. 2006;15(5):827–9.

    Google Scholar 

  67. Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2006;2:52.

    PubMed  PubMed Central  Google Scholar 

  68. Toscano WA, Oehlke KP. Systems biology: new approaches to old environmental health problems. Int J Environ Res Public Health. 2005;2(1):4–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Anthony JC. The promise of psychiatric enviromics. Br J Psychiatry Suppl. 2001;40:s8–11.

    CAS  PubMed  Google Scholar 

  70. Heyman B. Risk, safety and clinical practice : health care through the lens of risk. Oxford/New York: Oxford University Press; 2010. x, 257 p.

    Google Scholar 

  71. Clermont G, et al. In silico design of clinical trials: a method coming of age. Crit Care Med. 2004;32(10):2061–70.

    PubMed  Google Scholar 

  72. Whitcomb DC, et al. Evaluating disorders with a complex genetics basis. The future roles of meta-analysis and systems biology. Dig Dis Sci. 2005;50(12):2195–202.

    PubMed  Google Scholar 

  73. Rothman N, Stewart WF, Schulte PA. Incorporating biomarkers into cancer epidemiology: a matrix of biomarker and study design categories. Cancer Epidemiol Biomark Prev. 1995;4(4):301–11.

    CAS  Google Scholar 

  74. Boffetta P. Molecular epidemiology. J Intern Med. 2000;248:447–54.

    CAS  PubMed  Google Scholar 

  75. Mechanic LE, et al. Next generation analytic tools for large scale genetic epidemiology studies of complex diseases. Genet Epidemiol. 2012;36(1):22–35.

    PubMed  Google Scholar 

  76. Boffetta P, Islami F. The contribution of molecular epidemiology to the identification of human carcinogens: current status and future perspectives. Ann Oncol. 2013;24(4):901–8.

    CAS  PubMed  Google Scholar 

  77. Joshi A, Thorpe L, Waldron L. Population health informatics: driving evidence-based solutions into practice. Burlington: Jones & Bartlett Learning; 2019.

    Google Scholar 

  78. Schunemann HJ, et al. Letters, numbers, symbols and words: how to communicate grades of evidence and recommendations. CMAJ. 2003;169(7):677–80.

    PubMed  PubMed Central  Google Scholar 

  79. Atkins D, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.

    PubMed  Google Scholar 

  80. Guyatt GH, et al. GRADE guidelines 17: assessing the risk of bias associated with missing participant outcome data in a body of evidence. J Clin Epidemiol. 2017;87:14–22.

    PubMed  Google Scholar 

  81. Schunemann HJ, et al. GRADE guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. J Clin Epidemiol. 2016;76:89–98.

    PubMed  Google Scholar 

  82. Andrews JC, et al. GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation’s direction and strength. J Clin Epidemiol. 2013;66(7):726–35.

    PubMed  Google Scholar 

  83. Andrews J, et al. GRADE guidelines: 14. Going from evidence to recommendations: the significance and presentation of recommendations. J Clin Epidemiol. 2013;66(7):719–25.

    PubMed  Google Scholar 

  84. Guyatt GH, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol. 2013;66(2):173–83.

    PubMed  Google Scholar 

  85. Guyatt GH, Oxman AD, Schunemann HJ. GRADE guidelines-an introduction to the 10th-13th articles in the series. J Clin Epidemiol. 2013;66(2):121–3.

    PubMed  Google Scholar 

  86. Brunetti M, et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J Clin Epidemiol. 2013;66(2):140–50.

    PubMed  Google Scholar 

  87. Guyatt GH, et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol. 2013;66(2):158–72.

    PubMed  Google Scholar 

  88. Guyatt G, et al. GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J Clin Epidemiol. 2013;66(2):151–7.

    PubMed  Google Scholar 

  89. Guyatt GH, et al. GRADE guidelines 6. Rating the quality of evidence – imprecision. J Clin Epidemiol. 2011;64(12):1283–93.

    PubMed  Google Scholar 

  90. Guyatt GH, et al. GRADE guidelines: 7. Rating the quality of evidence – inconsistency. J Clin Epidemiol. 2011;64(12):1294–302.

    PubMed  Google Scholar 

  91. Guyatt GH, et al. GRADE guidelines: 5. Rating the quality of evidence – publication bias. J Clin Epidemiol. 2011;64(12):1277–82.

    PubMed  Google Scholar 

  92. Guyatt GH, et al. GRADE guidelines: 8. Rating the quality of evidence – indirectness. J Clin Epidemiol. 2011;64(12):1303–10.

    PubMed  Google Scholar 

  93. Guyatt GH, et al. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol. 2011;64(12):1311–6.

    PubMed  Google Scholar 

  94. Guyatt GH, et al. GRADE guidelines: 4. Rating the quality of evidence – study limitations (risk of bias). J Clin Epidemiol. 2011;64(4):407–15.

    PubMed  Google Scholar 

  95. Balshem H, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.

    PubMed  Google Scholar 

  96. Guyatt G, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94.

    PubMed  Google Scholar 

  97. Guyatt GH, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64(4):395–400.

    PubMed  Google Scholar 

  98. Pottie K, et al. GRADE equity guidelines 4: guidance on how to assess and address health equity within the evidence to decision process. J Clin Epidemiol. 2017;90:84–91.

    PubMed  PubMed Central  Google Scholar 

  99. Akl EA, et al. GRADE equity guidelines 2: considering health equity in GRADE guideline development: equity extension of the guideline development checklist. J Clin Epidemiol. 2017;90:68–75.

    PubMed  PubMed Central  Google Scholar 

  100. Welch VA, et al. GRADE equity guidelines 1: health equity in guideline development-introduction and rationale. J Clin Epidemiol. 2017;90:59–67.

    PubMed  PubMed Central  Google Scholar 

  101. Welch VA, et al. GRADE equity guidelines 3: health equity considerations in rating the certainty of synthesized evidence. J Clin Epidemiol. 2017;90:76–83.

    PubMed  PubMed Central  Google Scholar 

  102. Buhn S, et al. The risk of bias in systematic reviews tool showed fair reliability and good construct validity. J Clin Epidemiol. 2017;91:121–8.

    PubMed  Google Scholar 

  103. Laszlo A, Krippner S. Systems theories: their origins, foundations, and development. In: Jordan JS, editor. Systems theories and a priori aspects of perception, vol. 126: North Holland; 1998. p. 47–74.

    Google Scholar 

  104. Diez Roux AV. Complex systems thinking and current impasses in health disparities research. Am J Public Health. 2011;101(9):1627–34.

    PubMed  PubMed Central  Google Scholar 

  105. Sterman JD. Learning from evidence in a complex world. Am J Public Health. 2006;96(3):505–14.

    PubMed  PubMed Central  Google Scholar 

  106. Bar-Yam Y. Improving the effectiveness of health care and public health: a multiscale complex systems analysis. Am J Public Health. 2006;96(3):459–66.

    PubMed  PubMed Central  Google Scholar 

  107. Galea S, Riddle M, Kaplan GA. Causal thinking and complex system approaches in epidemiology. Int J Epidemiol. 2010;39(1):97–106.

    PubMed  Google Scholar 

  108. Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nat Rev Genet. 2016;17(10):615–29.

    CAS  PubMed  Google Scholar 

  109. Harding SG. Can theories be refuted?: essays on the Duhem-Quine thesis, Synthese library, vol. 81. Dordrecht-Holland/Boston: D. Reidel Pub. Co.; 1976. xxi, 318 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dammann, O., Smart, B. (2019). Integrating Evidence. In: Causation in Population Health Informatics and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-96307-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96307-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96306-8

  • Online ISBN: 978-3-319-96307-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics