Skip to main content

The Mathematical Model

  • Chapter
  • First Online:
Resonant Scattering and Generation of Waves

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 550 Accesses

Abstract

Electromagnetic phenomena in a space–time domain \(\mathbb {R}^4_>:=\mathbb {R}^3\times (0,\infty )\) can be governed by the system of macroscopic Maxwell’s differential equations

$$\begin{aligned} \begin{array}{r@{\ }c@{\ }l@{\quad }r@{\ }c@{\ }l} \dfrac{1}{c}\dfrac{\partial {\mathbf B }}{\partial t} + \nabla \times {\mathbf E }&{}=&{} 0, &{}\dfrac{1}{c}\dfrac{\partial {\mathbf D }}{\partial t} - \nabla \times {\mathbf H }&{}=&{}-\dfrac{4\pi }{c}{\mathbf J }\,,\\ \nabla \cdot {\mathbf D }&{}=&{} 4\pi \rho , &{} \nabla \cdot {\mathbf B }&{}=&{} 0, \end{array} \end{aligned}$$

where the Gaussian unit system is used (see, for example, Born and Wolf in Principles of Optic, Pergamon Press, Oxford, 1970, [1, Sect. 1.1.1], Landau et al. in Electrodynamics of Continuous Media, Elsevier Butterworth-Heinemann, Oxford, 1984, [2, Chap. IX]). Here, \({\mathbf E },\) \({\mathbf H },\) \({\mathbf D },\) \({\mathbf B }:\,\mathbb {R}^4_>\rightarrow \mathbb {R}^3\) denote the unknown vector fields of electric and magnetic field intensity, electric and magnetic induction, respectively, c is a positive constant—the velocity of light. The function \(\rho :\,\mathbb {R}^4_>\rightarrow \mathbb {R}\) and the vector field \({\mathbf J }:\,\mathbb {R}^4_>\rightarrow \mathbb {R}^3\) are called the electric charge density and the electric current density, respectively. These macroscopic quantities are obtained by averaging rapidly varying microscopic quantities over spatial scales that are much larger than the typical material microstructure scales. Details of the averaging procedure can be found in standard electrodynamic textbooks, for instance, in Jackson, Classical Electrodynamics, Wiley, New York, 1999, [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These four macroscopic equations are called Faraday’s law of induction, Ampére–Maxwell’s flux equation, Gauss’ electric field law and Gauss’ magnetic field law, respectively.

  2. 2.

    We use this somewhat unusual notation in order to avoid a notational overload by overlined symbols.

  3. 3.

    A counterexample is water: The asymmetry of the water molecule with respect to the central oxygen atom causes a dipole moment in the symmetry plane pointed towards the more positive hydrogen atoms.

  4. 4.

    Here, we use the setting of Bremermann [11, Sect. 8.2] or Titchmarsh [12, Sect. I.1.2] for the Fourier transform, the latter except for scaling.

  5. 5.

    This relation is called Ohm’s law. It is a linear approximative model of the fact that in conducting media the electric field induces a current.

  6. 6.

    Formally, the compatibility of the initial values \({\mathbf D }_0,\) \({\mathbf B }_0\) with (1.9) (considered for \({\mathbf D }\) resp. \({\mathbf B }\)) should be required.

  7. 7.

    If \(\varepsilon _0,\) \(\mu _0\) denote the permittivity and the permeability, resp., of the free space, it holds that \(c'=(\varepsilon _0\mu _0)^{-1/2}.\)

  8. 8.

    Indeed, at this point two sources of error occur. The first source is the truncation of the infinite system to a finite one so that, in general, the solution of the truncated system does not match the first four (or three, respectively) Fourier coefficients. The second source is the truncation error of the partial Fourier series.

References

  1. Born, M., Wolf, E.: Principles of Optic, 4th edn. Pergamon Press, Oxford (1970)

    Google Scholar 

  2. Landau, L., Lifshitz, E., Pitaevskii, L.: Electrodynamics of Continuous Media. Course of Theoretical Physics, vol. 8, 2nd edn. Elsevier Butterworth-Heinemann, Oxford (1984)

    Google Scholar 

  3. Jackson, J.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  4. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  5. Volterra, V.: Theory of Functionals and of Integral and Integro-differential Equations. Dover Publications Inc., New York (1959)

    MATH  Google Scholar 

  6. Wegener, M.: Extreme Nonlinear Optics. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Akhmediev, N.: Spatial solitons in Kerr and Kerr-like media. Opt. Quantum Electron. 30, 535–569 (1998)

    Article  Google Scholar 

  8. Kivshar, Y.: Bright and dark spatial solitons in non-Kerr media. Opt. Quantum Electron. 30, 571–614 (1998)

    Article  Google Scholar 

  9. Akhmediev, N., Ankevich, A.: Solitons. Fizmatlit, Moscow (2003). (Russian translation of the 1997 English original edition)

    Google Scholar 

  10. Boyd, R.: Nonlinear Optics. Academic Press, San Diego (2003)

    Google Scholar 

  11. Bremermann, H.: Distributions, Complex Variables, and Fourier Transforms. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  12. Titchmarsh, E.: Introduction to the Theory of Fourier Integrals, 2nd edn. Clarendon Press, Oxford (1948)

    Google Scholar 

  13. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Spectral Theory and Applications, vol. 3. Springer, Berlin (2000)

    MATH  Google Scholar 

  14. Yatsyk, V.: About a problem of diffraction on transverse non-homogeneous dielectric layer of Kerr-like nonlinearity. Int. J. Electromagn. Waves Electron. Syst. 12(1), 59–69 (2007). (In Russian)

    Google Scholar 

  15. Shestopalov, Y., Yatsyk, V.: Resonance scattering of electromagnetic waves by a Kerr nonlinear dielectric layer. Radiotekhnika i Elektronika (J. Commun. Technol. Electron.) 52(11), 1285–1300 (2007)

    Google Scholar 

  16. Kravchenko, V., Yatsyk, V.: Effects of resonant scattering of waves by layered dielectric structure with Kerr-type nonlinearity. Int. J. Electromagn. Waves Electron. Syst. 12(12), 17–40 (2007). (In Russian)

    Google Scholar 

  17. Angermann, L., Yatsyk, V.: Mathematical models of the analysis of processes of resonance scattering and generation of the third harmonic by the diffraction of a plane wave through a layered, cubically polarisable structure. Int. J. Electromagn. Waves Electron. Syst. 15(1), 36–49 (2010). (In Russian)

    Google Scholar 

  18. Kleinman, D.: Nonlinear dielectric polarization in optical media. Phys. Rev. 126(6), 1977–1979 (1962)

    Article  ADS  Google Scholar 

  19. Miloslavsky, V.: Nonlinear Optics. V.N. Karazin Kharkov National University, Kharkov (2008)

    Google Scholar 

  20. Yatsyk, V.: Diffraction by a layer and layered structure with positive and negative susceptibilities of Kerr-nonlinear media. Usp. Sovr. Radioelektroniki 8, 68–80 (2006)

    Google Scholar 

  21. Angermann, L., Yatsyk, V.: Numerical simulation of the diffraction of weak electromagnetic waves by a Kerr-type nonlinear dielectric layer. Int. J. Electromagn. Waves Electron. Syst. 13(12), 15–30 (2008)

    Google Scholar 

  22. Smirnov, Y., Schürmann, H., Shestopalov, Y.: Propagation of TE-waves in cylindrical nonlinear dielectric waveguides. Phys. Rev. E 71, 0166141–10 (2005)

    Google Scholar 

  23. Serov, V., Schürmann, H., Svetogorova, E.: Integral equation approach to reflection and transmission of a plane te-wave at a (linear/nonlinear) dielectric film with spatially varying permittivities. J. Phys. A Math. Gen. 37, 3489–3500 (2004)

    Article  ADS  Google Scholar 

  24. Shestopalov, V., Sirenko, Y.: Dynamical Theory of Gratings. Naukova Dumka, Kiev (1989). (In Russian)

    MATH  Google Scholar 

  25. Shestopalov, Y., Yatsyk, V.: Diffraction of electromagnetic waves by a layer filled with a Kerr-type nonlinear medium. J. Nonlinear Math. Phys. 17(3), 311–335 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Angermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angermann, L., Yatsyk, V.V. (2019). The Mathematical Model. In: Resonant Scattering and Generation of Waves. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-96301-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96301-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96300-6

  • Online ISBN: 978-3-319-96301-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics