Skip to main content

Mobility of Web of Things: A Distributed Semantic Discovery Architecture

  • Conference paper
  • First Online:
Big Data, Cloud and Applications (BDCA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 872))

Included in the following conference series:

  • 1132 Accesses

Abstract

The mobility of Internet of Things (IoT) objects, gateways and services is a challenging issue. Effectively, this phenomenon can hamper the interoperability and scalability of the network at many levels. Nevertheless, this phenomenon is a natural feature of IoT that cannot be neglected. In this paper, we present different mechanisms that can be used together to reduce the negative impact of this phenomenon in dynamic IoT environments. The contribution of this paper is twofold: firstly a semantic-based clustering method which takes into account the dynamicity of the services. Secondly, a spatial-based indexing method which considers the mobility of IoT objects and gateways. The performed experiments show the feasibility of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De, S., Zhou, Y., Moessner, K.: Ontologies and context modeling for the Web of Things, pp. 3–36 (2017)

    Google Scholar 

  2. Guinard, D.D., Trifa, V.M.: Building the Web of Things (2016)

    Google Scholar 

  3. Kolchin, M., et al.: Ontologies for web of things: a pragmatic review. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2015. CCIS, vol. 518, pp. 102–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24543-0_8

    Chapter  Google Scholar 

  4. Wu, Z., Xu, Y., Zhang, C., Yang, Y., Ji, Y.: Towards semantic web of things: from manual to semi-automatic semantic annotation on web of things. In: Wang, Y., Yu, G., Zhang, Y., Han, Z., Wang, G. (eds.) BigCom 2016. LNCS, vol. 9784, pp. 295–308. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42553-5_25

    Chapter  Google Scholar 

  5. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33, 1417–1440 (2004)

    Article  MathSciNet  Google Scholar 

  6. Young, S., Arel, I., Karnowski, T.P., Rose, D.: A fast and stable incremental clustering algorithm. In: ITNG, pp. 204–209 (2010)

    Google Scholar 

  7. Wu, J., Chen, L., Zheng, Z., Lyu, M.R., Wu, Z.: Clustering web services to facilitate service discovery. Knowl. Inf. Syst. 38(1), 207–229 (2014)

    Article  Google Scholar 

  8. Cilibrasi, R.L., Vitnyi, P.M.B.: The Google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)

    Article  Google Scholar 

  9. Zhou, Y., De, S., Wang, W., Moessner, K.: Search techniques for the web of things: a taxonomy and survey. Sensors 16(5), 600 (2016)

    Article  Google Scholar 

  10. Ding, Z., Gao, X., Guo, L., Yang, Q.: A hybrid search engine framework for the internet of things based on spatial-temporal, value-based, and keyword-based conditions. In: 2012 IEEE International Conference on Green Computing and Communications (GreenCom), pp. 17–25. IEEE, November 2012

    Google Scholar 

  11. Wang, W., De, S., Cassar, G., Moessner, K.: An experimental study on geospatial indexing for sensor service discovery. Expert Syst. Appl. 42(7), 3528–3538 (2015)

    Article  Google Scholar 

  12. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix hash tree: an indexing data structure over distributed hash tables. In: Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing, vol. 37, July 2004

    Google Scholar 

  13. Paganelli, F., Parlanti, D.: A DHT-based discovery service for the Internet of Things. J. Comput. Netw. Commun. 2012, 11 p. (2012). https://doi.org/10.1155/2012/107041. Article ID 107041

  14. Hastings, E.J., Mesit, J., Guha, R.K.: Optimization of large-scale, real-time simulations by spatial hashing. In: Proceedings of the 2005 Summer Computer Simulation Conference, vol. 37, no. 4, pp. 9–17 (2005)

    Google Scholar 

  15. https://github.com/nongbottom/Peersim-Pht

  16. Lefebvre, S., Hoppe, H.: Perfect spatial hashing. In: ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 579–588. ACM, July 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Nadim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadim, I., El Ghayam, Y., Sadiq, A. (2018). Mobility of Web of Things: A Distributed Semantic Discovery Architecture. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N. (eds) Big Data, Cloud and Applications. BDCA 2018. Communications in Computer and Information Science, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-319-96292-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96292-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96291-7

  • Online ISBN: 978-3-319-96292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics