Skip to main content

Towards for Using Spectral Clustering in Graph Mining

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 872))

Abstract

This paper presents an approach of community detection from data modeled by graphs, using the Spectral Clustering (SC) algorithms, and based on a matrix representation of the graphs. We will focus on the use of Laplacian matrices afterwards. The spectral analysis of those matrices can give us interesting details about the processed graph. The input of the process is a set of data and the output will be a set of communities or clusters that regroup the input data, by starting with the graphical modeling of the data and going through the matrix representation of the similarity graph, then the spectral analysis of the Laplacian matrices, the process will finish with the results interpretation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jourdan, L.: Métaheuristiques pour l’extraction de connaissances: Application à la génomique. Thesis. University of Lile 1, France (2003)

    Google Scholar 

  2. Alaoui, A.: Application des techniques de métaheuristiques pour l’optimisation de la tache de la classification de la fouille de données. Thesis. Algeria (2012)

    Google Scholar 

  3. Jaques, J.: Classification sur données médicales à l’aide de méthodes d’optimisation et datamining, appliquée au pre-sceening dans les essais cliniques. Thesis. France (2013)

    Google Scholar 

  4. Jourdan, L.: Optimisation multiobjectif pour l’extraction de connaissances floue sur données massives et mal réparties. Thesis subject proposed by L. Jourdan. France (2017)

    Google Scholar 

  5. Pennerath, F.: Méthodes d’extraction de connaissances à partir de données modélisables par des graphes, application à des problèmes de synthèse organique. Thesis. Chapter 1 and 2. University of Nancy 1, France (2009)

    Google Scholar 

  6. Bosc, G., Kaytoue, M., Raïssi, C., Boulicaut, J.: Fouille de motifs séquentiels pour l’élicitation de stratégies à partir de traces d’interactions entre agents en compétition, vol. RNTI-E-26, pp. 359–370. University of Lyon, France (2014)

    Google Scholar 

  7. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014140

    Chapter  Google Scholar 

  8. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, Taiwan (1995)

    Google Scholar 

  9. Zaki, M.: SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn. 42(1–2), 31–60 (2001)

    Article  Google Scholar 

  10. Zaki, M.: New algorithms for fast discovery of association rules. In: Proceedings of the KDD 1997 (1997)

    Google Scholar 

  11. Han, J., et al.: FreeSpan: frequent pattern-projected sequential pattern mining. In: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 355–359 (2000)

    Google Scholar 

  12. Han, J., et al.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224 (2001)

    Google Scholar 

  13. Asai, T., et al.: Efficient substructure discovery from large semi-structured data. In: Proceedings of the 2nd Annual SIAM Symposium on Data Mining (2002)

    Google Scholar 

  14. Termier, A., et al.: DryadeParent, an efficient and robust closed attribute tree mining algorithm. In: IEEE Transactions on Knowledge and Data Engineering (2008)

    Google Scholar 

  15. Zaki, M.: Efficiently mining frequent trees in a forest. In: Proceedings of the SIGKDD’02 Conference, Edmonton, Alberta (2002)

    Google Scholar 

  16. Termier, A., et al.: Dryade: a new approach for discovering closed frequent trees in heterogeneous tree databases. In: 4th IEEE International Conference on Data Mining (2004)

    Google Scholar 

  17. Chi, Y., et al.: HybridTreeMiner: an efficient algorithm for mining frequent rooted trees and free trees using canonical forms. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management, 2004, Santorini Island (2004)

    Google Scholar 

  18. Chi, Y., et al.: CMTreeMiner: mining both closed and maximal frequent subtrees. In: Proceedings of the 8th Pacific-Asia Conference, PAKDD 2004, Sydney (2004)

    Google Scholar 

  19. Zaki, M.: Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae 66(1–2), 33–52 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Chi, Y., et al.: Indexing and mining free trees. In: IEEE International Conference on Data Mining ICDM 2003 Third, Melbourne (2003)

    Google Scholar 

  21. Nijssen, S., et al.: The gaston tool for frequent subgraph mining. Electron. Notes Theor. Comput. Sci. 127(1), 77–87 (2005)

    Article  MathSciNet  Google Scholar 

  22. Inokushi, A., et al.: An apriori-based algorithm for mining frequent substructures from graph data. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 13–23 (2002)

    Google Scholar 

  23. Kuramochi, M., et al.: Frequent subgraph discovery. In: Proceedings IEEE International Conference on Data Mining ICDM 2001, San Jose (2001)

    Google Scholar 

  24. Wörlein, M., et al.: A quantitative comparison of the subgraph miners MoFa, gSpan, FFSM, and Gaston. In: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto (2005)

    Google Scholar 

  25. Huan, J., et al.: SPIN: mining maximal frequent subgraphs from graph databases. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 581–586, Seattle (2005)

    Google Scholar 

  26. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 286–295 (2003)

    Google Scholar 

  27. Yan, X., et al.: Mining closed relational graphs with connectivity constraints. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 324–333 (2005)

    Google Scholar 

  28. Zhu, F., et al.: gPrune: a constraint pushing framework for graph pattern mining. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 388–400 (2007)

    Google Scholar 

  29. Al Hasan, M., et al.: ORIGAMI: mining representative orthogonal graph patterns. In: Seventh IEEE International Conference on Data Mining. IEEE (2007)

    Google Scholar 

  30. Yan, X., et al.: Mining significant graph patterns by leap search. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 433–444 (2008)

    Google Scholar 

  31. Gephi, The Open Graph Viz Platform (open source). https://gephi.org/

  32. Matias, C.: Analyse statistique des graphes (2015)

    Google Scholar 

  33. von Luxburg, U.: Technical Report No. TR-149: A tutorial on Spectral Clustering. Max Planck Institute for Biological Cybernetics (2007)

    Google Scholar 

  34. Chung, F.: Lectures on Spectral Graph Theory, Chapter 1. University of Pennsylvania, Philadelphia, Pennsylvania 19104 (1997)

    Google Scholar 

  35. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 14, 849–856 (2002)

    Google Scholar 

  36. Rohe, K., et al.: Spectral clustering and the high-dimensional stochastic blockmodel. Ann. Stat. 39(4), 1878–1915 (2011)

    Article  MathSciNet  Google Scholar 

  37. von Luxburg, U., et al.: Limits of spectral clustering. Advances in Neural Information Processing Systems (NIPS) 17, pp. 857–864. MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ait El Mouden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ait El Mouden, Z., Moulay Taj, R., Jakimi, A., Hajar, M. (2018). Towards for Using Spectral Clustering in Graph Mining. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N. (eds) Big Data, Cloud and Applications. BDCA 2018. Communications in Computer and Information Science, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-319-96292-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96292-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96291-7

  • Online ISBN: 978-3-319-96292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics