Skip to main content

Review of the Impacts on Biodiversity of Land-Use Changes Induced by Non-food Biomass Production

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 30

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 30))

Abstract

Over the last few decades, much emphasis has been put on using biomass and other renewable resources for energy production. In a context of increasing human population, global biodiversity decline and rapid climate change, expanding land clearance for bioenergy crop cultivation raises many concerns about the competition for agricultural land use between food, feed, and fibre production. Expanding land for bioenergy therefore challenges the sustainability of agricultural systems as well as its environmental impact. Several studies have attempted to quantify these impacts of land use change (LUC), however they do not take into account the causal chain from “the drivers of LUC to the impact assessment” which is required to understand the underlying mechanism.

The work is part of a global project assessing the impact of LUC toward bioenergy crops cultivation considering the causal chain. Here, we review studies assessing how land-use shifts towards bioenergy crops impact biodiversity. The review first reveals that very few studies have assessed biodiversity by considering the whole causal chain. Despite this, a general consensus emerges on a negative impact on biodiversity of bioenergy crops cultivation. This study also points out the diversity of metrics used to assess biodiversity, from species richness to proxies such as habitat quality. Overall, this review suggests that a sounder quantification of the effect of LUC toward bioenergy crops cultivation could be obtained by using more accurate metrics both for biodiversity (i.e. coupling taxonomic and functional diversity indices, and selecting relevant taxa) and the characterization of the environment (i.e. landscape configuration and composition, and the integration of management practices).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkemade R, van Oorschot M, Miles L, Nellemann C, Bakkenes M, ten Brink B (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12(3):374–390. https://doi.org/10.1007/s10021-009-9229-5

    Article  Google Scholar 

  • Balvanera P, Siddique I, Dee L, Paquette A, Isbell F, Gonzalez A, Byrnes J, O’Connor MI, Hungate BA, Griffin JN (2014) Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64(1):49–57. https://doi.org/10.1093/biosci/bit003

    Article  Google Scholar 

  • Bamiere L, Bellassen V (this volume) Review of the impacts on greenhouse gas emissions of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, Cham

    Google Scholar 

  • Baral H, Keenan RJ, Fox JC, Stork NE, Kasel S (2013) Spatial assessment of ecosystem goods and services in complex production landscapes: a case study from South-Eastern Australia. Ecol Complex 13:35–45. https://doi.org/10.1016/j.ecocom.2012.11.001

    Article  Google Scholar 

  • Bessou C (this volume) Review of the impacts on soils of land-use changes induced by non-food biomass production. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, Cham

    Google Scholar 

  • BirdLife International (2010) Meeting the 2020 biodiversity targets: action and monitoring based on birds. Cambridge, UK

    Google Scholar 

  • Brandt K, Glemnitz M (2014) Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ Monit Assess 186(2):679–697. https://doi.org/10.1007/s10661-013-3407-9

    Article  PubMed  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405(6783):234–242. https://doi.org/10.1038/35012241

    Article  CAS  PubMed  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Ribeiro S, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Stechow Cv (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 209–332

    Chapter  Google Scholar 

  • Cousins SAO (2009) Extinction debt in fragmented grasslands: paid or not? J Veg Sci 20(1):3–7. https://doi.org/10.1111/j.1654-1103.2009.05647.x

    Article  Google Scholar 

  • Curran M, de Souza DM, Anton A, Teixeira RFM, Michelsen O, Vidal-Legaz B, Sala S, Canals LMI (2016) How well does LCA model land use impacts on biodiversity?-A comparison with approaches from ecology and conservation. Environ Sci Technol 50(6):2782–2795. https://doi.org/10.1021/acs.est.5b04681

    Article  CAS  PubMed  Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013a) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18(6):1216–1230. https://doi.org/10.1007/s11367-012-0412-0

    Article  Google Scholar 

  • de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013b) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47(16):9281–9290. https://doi.org/10.1021/es400592q

    Article  CAS  PubMed  Google Scholar 

  • Death RG, Baillie B, Fransen P (2003) Effect of Pinus radiata logging on stream invertebrate communities in Hawke’s bay, New Zealand. J Mar Freshwat Res 37(3):507–520

    Article  Google Scholar 

  • Diaz S, Quetier F, Caceres DM, Trainor SF, Perez-Harguindeguy N, Bret-Harte MS, Finegan B, Pena-Claros M, Poorter L (2011) Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc Natl Acad Sci U S A 108(3):895–902. https://doi.org/10.1073/pnas.1017993108

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicks LV, Baude M, Roberts SPM, Phillips J, Green M, Carvell C (2015) How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecol Entomol 40:22–35. https://doi.org/10.1111/een.12226

    Article  PubMed  PubMed Central  Google Scholar 

  • Einheuser MD, Nejadhashemi AP, Woznicki SA (2013) Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass Bioenergy 58:198–209. https://doi.org/10.1016/j.biombioe.2013.08.025

    Article  Google Scholar 

  • Engel J, Huth A, Frank K (2012) Bioenergy production and skylark (Alauda arvensis) population abundance – a modelling approach for the analysis of land-use change impacts and conservation options. Glob Change Biol Bioenergy 4(6):713–727. https://doi.org/10.1111/j.1757-1707.2012.01170.x

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  • Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production – an overview. Biofuels Bioprod Biorefin 4(6):692–704. https://doi.org/10.1002/bbb.258

    Article  CAS  Google Scholar 

  • Furness RW, Greenwood JJD (1993) Birds as monitors of environmental change. Chapman & Hall, London, p 356

    Book  Google Scholar 

  • Gaba S, Gabriel E, Chadoeuf J, Bonneu F, Bretagnolle V (2016) Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep 6:30112. https://doi.org/10.1038/srep30112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Quijano JF, Deckmyn G, Moons E, Proost S, Ceulemans R, Muys B (2005) An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: description and case studies. For Ecol Manag 207(1–2):245–262. https://doi.org/10.1016/j.foreco.2004.10.030

    Article  Google Scholar 

  • Helin T, Holma A, Soimakallio S (2014) Is land use impact assessment in LCA applicable for forest biomass value chains? Findings from comparison of use of Scandinavian wood, agro-biomass and peat for energy. Int J Life Cycle Assess 19(4):770–785. https://doi.org/10.1007/s11367-014-0706-5

    Article  Google Scholar 

  • Henry M, Cerrutti N, Aupinel P, Decourtye A, Gayrard M, Odoux JF, Pissard A, Ruger C, Bretagnolle V (2015) Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proc R Soc B Biol Sci 282(1819):20152110. https://doi.org/10.1098/rspb.2015.2110

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35. https://doi.org/10.1890/04-0922

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Ockinger E, Partel M, Pino J, Roda F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–571. https://doi.org/10.1016/j.tree.2009.04.011

    Article  PubMed  Google Scholar 

  • Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P et al (2013) Estimating the world’s potentially available cropland using a bottom-up approach. Glob Environ Chang 23(5):892–901

    Article  Google Scholar 

  • Levine UY, Teal TK, Robertson GP, Schmidt TM (2011) Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J 5(10):1683–1691. https://doi.org/10.1038/ismej.2011.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louette G, Maes D, Alkemade JRM, Boitani L, de Knegt B, Eggers J, Falcucci A, Framstad E, Hagemeijer W, Hennekens SM, Maiorano L, Nagy S, Serradilla AN, Ozinga WA, Schaminee JHJ, Tsiaousi V, van Tol S, Delbaere B (2010) BioScore-cost-effective assessment of policy impact on biodiversity. J Nat Conserv 18(2):142–148. https://doi.org/10.1016/j.jnc.2009.08.002

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185. https://doi.org/10.1016/j.tree.2006.02.002

    Article  PubMed  Google Scholar 

  • Mendenhall CD, Karp DS, Meyer CFJ, Hadly EA, Daily GC (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509(7499):213–217. https://doi.org/10.1038/nature13139

    Article  CAS  PubMed  Google Scholar 

  • Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS One 5(12):e14327. https://doi.org/10.1371/journal.pone.0014327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Borger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Diaz S, Echeverria-Londono S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45–50. https://doi.org/10.1038/nature14324

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL (1995) Natures keepers – the new science of nature management – Budiansky S. Nature 378(6552):104–105. https://doi.org/10.1038/378104a0

    Article  CAS  Google Scholar 

  • Preston FW (1960) Time and space and the variation of species. Ecology 41(4):611–627. https://doi.org/10.2307/1931793

    Article  Google Scholar 

  • Réchauchère O, El Akkari M, Le Perchec S, Makowski D, Gabrielle B, Bispo A (this volume) An innovative methodological framework for analyzing existing scientific research on land-use change and associated environmental impacts. In: Réchauchère O, Bispo A, Gabrielle B, Makowski D (eds) Sustainable agriculture reviews, vol 30. Springer, Cham

    Google Scholar 

  • Requier F, Odoux JF, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol Appl 25(4):881–890. https://doi.org/10.1890/14-1011.1

    Article  PubMed  Google Scholar 

  • Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50(2):335–344. https://doi.org/10.1111/1365-2664.12060

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Frund J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol Rev 87(3):661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x

    Article  PubMed  Google Scholar 

  • van Vliet J, Magliocca NR, Buchner B, Cook E, Benayas JMR, Ellis EC, Heinimann A, Keys E, Lee TM, Liu JG, Mertz O, Meyfroidt P, Moritz M, Poeplau C, Robinson BE, Seppelt R, Seto KC, Verburg PH (2016) Meta-studies in land use science: current coverage and prospects. Ambio 45(1):15–28. https://doi.org/10.1007/s13280-015-0699-8

    Article  PubMed  Google Scholar 

  • Viglizzo EF, Frank FC, Carreno LV, Jobbagy EG, Pereyra H, Clatt J, Pincen D, Ricard MF (2011) Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob Chang Biol 17(2):959–973. https://doi.org/10.1111/j.1365-2486.2010.02293.x

    Article  Google Scholar 

  • Villamor GB, Le QB, Djanibekov U, van Noordwijk M, Vlek PLG (2014) Biodiversity in rubber agroforests, carbon emissions, and rural livelihoods: an agent-based model of land-use dynamics in lowland Sumatra. Environ Model Softw 61:151–165. https://doi.org/10.1016/j.envsoft.2014.07.013

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277(5325):494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

Annex: References in the Study Corpus Addressing Impacts on Biodiversity

Download references

Acknowledgements

This work was funded by the French Environment and Energy Management Agency (ADEME) and the Ministry of Agriculture and Forestry under grant contract 12-60-C0004. Assistance from Sophie Le Perchec (INRA Rennes) in the literature search is acknowledged, as well as the following scientists who contributed to the detailed analysis of the scientific articles: Laure Bamière (INRA Grignon), Aude Barbottin (INRA Grignon), Valentin Bellassen (INRA Dijon), Martial Bernoux (IRD Montpellier), Cécile Bessou (CIRAD Montpellier), Antonio Bispo (ADEME Angers), François Chiron (AgroParisTech, Orsay), Stéphane De Cara (INRA Grignon), Patrice Dumas (CIRAD Montpellier), Guillaume Décocq (Univ. Picardie Jules-Vernes, Amiens), Jean-François Dhôte (INRA Nancy), Monia El Akkari (INRA Paris), Nathalie Frascaria (AgroParisTech, Orsay), Benoît Gabrielle (AgroParisTech, Grignon), Philippe Lescoat (AgroParisTech, Paris), David Makowski (INRA Grignon), Olivier Réchauchère (INRA Paris), Julie Wohlfahrt (INRA Mirecourt).

The author would also like to thank two anonymous readers for their insightful comments, which made it possible to improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Gaba .

Editor information

Editors and Affiliations

8.1 Supplementary Electronic Material

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaba, S. (2018). Review of the Impacts on Biodiversity of Land-Use Changes Induced by Non-food Biomass Production. In: Réchauchère, O., Bispo, A., Gabrielle, B., Makowski, D. (eds) Sustainable Agriculture Reviews 30. Sustainable Agriculture Reviews, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-96289-4_8

Download citation

Publish with us

Policies and ethics