Putnam on Mathematics as Modal Logic

  • Øystein LinneboEmail author
Part of the Outstanding Contributions to Logic book series (OCTR, volume 9)


Two uses of modal logic to explicate mathematics—due primarily to Hilary Putnam and Charles Parsons—are compared and contrasted. The approaches differ both technically and concerning ontology. Some reasons to push the former approach in the direction of the latter are articulated and discussed.


  1. Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  2. Boolos, G. (1984). To be is to be a value of a variable (or to be some values of some variables). Journal of Philosophy, 81(8), 430–449. Reprinted in (Boolos, 1998).MathSciNetCrossRefGoogle Scholar
  3. Boolos, G. (1998). Logic, logic, and logic. Cambridge: Harvard University Press.zbMATHGoogle Scholar
  4. Ewald, W. (1996). From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2). Oxford: Oxford University Press.zbMATHGoogle Scholar
  5. Fine, K. (1994). Essence and modality. In J. Tomberlin (Ed.), Language and logic (Vol. 8, pp. 1–16)., Philosophical perspectives Ridgeview: Atascadero.Google Scholar
  6. Fine, K. (2005). Our knowledge of mathematical objects. In T. S. Gendler & J. Hawthorne (Eds.), Oxford studies in epistemology (Vol. 1, pp. 89–109). Oxford: Oxford University Press.Google Scholar
  7. Fine, K. (2006). Relatively unrestricted quantification. In A. Rayo & G. Uzquiano (Eds.), Absolute generality (pp. 20–44). Oxford: Oxford University Press.Google Scholar
  8. Heck, R. G, Jr. (2000). Cardinality, counting, and equinumerosity. Notre Dame Journal of Formal Logic, 41(3), 187–209.MathSciNetCrossRefGoogle Scholar
  9. Hellman, G. (1989). Mathematics without numbers. Oxford: Clarendon.zbMATHGoogle Scholar
  10. Hellman, G. (1996). Structuralism without structures. Philosophia Mathematica, 4(2), 100–123.MathSciNetCrossRefGoogle Scholar
  11. Hellman, G. (2015). Infinite possibilities and possibilities of infinity. In R. E. Auxier, D. R. Anderson, & L. E. Hahn (Eds.), The philosophy of Hilary Putnam. La Salle: Open Court.Google Scholar
  12. Hellman, G. (forthcoming). Reflections on reflection in a multiverse. In E. Reck (Ed.), Logic, philosophy of mathematics, and their history: Essays in honor of W.W. Tait. London: College Publications.Google Scholar
  13. Kitcher, P. (1983). The nature of mathematical knowledge. Oxford: Oxford University Press.zbMATHGoogle Scholar
  14. Linnebo, Ø. (2010). Pluralities and sets. Journal of Philosophy, 107(3), 144–164.CrossRefGoogle Scholar
  15. Linnebo, Ø. (2012a). Plural quantification. Stanford Encyclopedia of philosophy.
  16. Linnebo, Ø. (2012b). Reference by abstraction. Proceedings of the Aristotelian Society, 112(1pt1), 45–71.Google Scholar
  17. Linnebo, Ø. (2013). The potential hierarchy of sets. Review of Symbolic Logic, 6(2), 205–228.MathSciNetCrossRefGoogle Scholar
  18. Linnebo, Ø. (2018). Thin objects: An abstractionist account. Oxford: Oxford University Press.Google Scholar
  19. Parsons, C. (1974). The liar paradox. Journal of Philosophical Logic, 3(4), 381–412. Reprinted in Parsons (1983).Google Scholar
  20. Parsons, C. (1977). What is the iterative conception of set? In R. Butts & J. Hintikka (Eds.), Logic, foundations of mathematics, and computability theory (pp. 335–367). Dordrecht: Reidel. Reprinted in Benacerraf and Putnam (1983) and Parsons (1983).CrossRefGoogle Scholar
  21. Parsons, C. (1983). Mathematics in philosophy. Ithaca: Cornell University Press.zbMATHGoogle Scholar
  22. Parsons, C. (1990). The structuralist view of mathematical objects. Synthese, 84, 303–346.MathSciNetCrossRefGoogle Scholar
  23. Parsons, C. (2008). Mathematical thought and its objects. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  24. Putnam, H. (1967). Mathematics without foundations. Journal of Philosophy, LXIV(1), 5–22. Reprinted in Benacerraf and Putnam (1983) and Putnam (1975).Google Scholar
  25. Putnam, H. (1975). Mathematics, matter and method. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  26. Roberts, S. (forthcoming). Modal structuralism and reflection. Review of Symbolic Logic.
  27. Studd, J. (2013). The iterative conception of set: A (bi-)modal axiomatisation. Journal of Philosophical Logic, 42(5), 697–725.MathSciNetCrossRefGoogle Scholar
  28. Studd, J. (2016). Abstraction reconceived. British Journal of Philosophy of Science, 67(2), 579–615.MathSciNetCrossRefGoogle Scholar
  29. Weyl, H. (1930). Levels of infinity. In P. Pesic (Ed.), Levels of infinity: Selected writings on mathematics and philosophy (pp. 17–31). Mineola: Dover.Google Scholar
  30. Williamson, T. (2013). Modal logic as metaphysics. Oxford: Oxford University Press.Google Scholar
  31. Yablo, S. (2006). Circularity and paradox. In T. Bolander, V. Hendricks, & S. A. Pedersen (Eds.), Self-reference. Chicago: CSLI Press.zbMATHGoogle Scholar
  32. Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae, 16, 29–47. Translated in Ewald (1996).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of OsloOsloNorway

Personalised recommendations