Skip to main content

On Microstructure-Property Relationships Derived by Virtual Materials Testing with an Emphasis on Effective Conductivity

  • Conference paper
  • First Online:
Simulation Science (SimScience 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 889))

Included in the following conference series:

  • 461 Accesses

Abstract

Based on virtual materials testing, which combines image analysis, stochastic microstructure modeling and numerical simulations, quantitative relationships between microstructure characteristics and effective conductivity can be derived. The idea of virtual materials testing is to generate a large variety of stochastically simulated microstructures in short time. These virtual, but realistic microstructures are used as input for numerical transport simulations. Finally, a large data basis is available to study microstructure-property relationships quantitatively by classical regression analysis and tools from statistical learning. The microstructure-property relationships obtained for effective conductivity can also be applied to Fickian diffusion. For validation, we discuss an example of Fickian diffusion in porous silica monoliths on the basis of 3D image data.

M. Neumann and V. Schmidt—The work of MN and VS has been partially funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) under grant 03ET6095E.

D. Hlushkou and U. Tallarek—The work of DH and UT has been supported by the Deutsche Forschungsgemeinschaft DFG (Bonn, Germany) under grant TA 268/9-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeQuilettes, D., Vorpahl, S.M., Stranks, S.D., Nagaoka, H., Eperon, G.E., Ziffer, M.E., Snaith, H.J., Ginger, D.S.: Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015)

    Article  Google Scholar 

  2. Wilson, J.R., Cronin, J.S., Barnett, S.A., Harris, S.J.: Measurement of three-dimensional microstructure in a \({\rm{LiCoO}}_{2}\) positive electrode. J. Power Sour. 196(7), 3443–3447 (2011)

    Article  Google Scholar 

  3. Prakash, B.S., Kumar, S.S., Aruna, S.T.: Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renew. Sustain. Energy Rev. 36, 149–179 (2014)

    Article  Google Scholar 

  4. Nischang, I.: Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. J. Chromatogr. A 1287, 39–58 (2013)

    Article  Google Scholar 

  5. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  6. Hashin, Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29(1), 143–150 (1962)

    Article  MathSciNet  Google Scholar 

  7. Maire, E., Withers, P.J.: Quantitative X-ray tomography. Int. Mater. Rev. 59(1), 1–43 (2014)

    Article  Google Scholar 

  8. Holzer, L., Cantoni, M.: Review of FIB-tomography. In: Utke, I., Moshkalev, S., Russell, P., (eds.) Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications, pp. 410–435. Oxford University Press, New York (2012)

    Google Scholar 

  9. Midgley, P.A., Dunin-Borkowski, R.E.: Electron tomography and holography in materials science. Nat. Mater. 8(4), 271 (2009)

    Article  Google Scholar 

  10. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Chichester (2013)

    Book  Google Scholar 

  11. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  12. Hlushkou, D., Hormann, K., Höltzel, A., Khirevich, S., Seidel-Morgenstern, A., Tallarek, U.: Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. J. Chromatogr. A 1303, 28–38 (2013)

    Article  Google Scholar 

  13. Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)

    Article  Google Scholar 

  14. Holzer, L., Iwanschitz, B., Hocker, T., Keller, L., Pecho, O.M., Sartoris, G., Gasser, P., Münch, B.: Redox cycling of Ni-YSZ anodes for solid oxide fuel cells: influence of tortuosity, constriction and percolation factors on the effective transport properties. J. Power Sour. 242, 179–194 (2013)

    Article  Google Scholar 

  15. Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S., Kasagi, N.: Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images. J. Electrochem. Soc. 157(5), B665–B672 (2010)

    Article  Google Scholar 

  16. Tippmann, S., Walper, D., Balboa, L., Spier, B., Bessler, W.G.: Low-temperature charging of lithium-ion cells part I: electrochemical modeling and experimental investigation of degradation behavior. J. Power Sour. 252, 305–316 (2014)

    Article  Google Scholar 

  17. Gaiselmann, G., Neumann, M., Pecho, O.M., Hocker, T., Schmidt, V., Holzer, L.: Quantitative relationships between microstructure and effective transport properties based on virtual materials testing. AIChE J. 60(6), 1983–1999 (2014)

    Article  Google Scholar 

  18. Stenzel, O., Pecho, O.M., Holzer, L., Neumann, M., Schmidt, V.: Predicting effective conductivities based on geometric microstructure characteristics. AIChE J. 62, 1834–1843 (2016)

    Article  Google Scholar 

  19. Stenzel, O., Neumann, M., Pecho, O.M., Holzer, L., Schmidt, V.: Big data for microstructure-property relationships: a case study of predicting effective conductivities. AIChE J. 63(9), 4224–4232 (2017)

    Article  Google Scholar 

  20. Stoeckel, D., Kübel, C., Hormann, K., Höltzel, A., Smarsly, B.M., Tallarek, U.: Morphological analysis of disordered macroporous-mesoporous solids based on physical reconstruction by nanoscale tomography. Langmuir 30, 9022–9027 (2014)

    Article  Google Scholar 

  21. NM-SESES. http://nmtec.ch/nm-seses/. Accessed 2017

  22. GeoDict (2017). www.geodict.com

  23. Clennell, M.B.: Tortuosity: a guide through the maze. Geol. Soc. London Spec. Publ. 122, 299–344 (1997)

    Article  Google Scholar 

  24. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  25. VSG - Visualization Sciences Group - Avizo Standard (2017). http://www.vsg3d.com/

  26. Petersen, E.E.: Diffusion in a pore of varying cross section. AIChE J. 4(3), 343–345 (1958)

    Article  Google Scholar 

  27. Holzer, L., Iwanschitz, B., Hocker, T., Keller, L., Pecho, O.M., Sartoris, G., Gasser, P., Münch, B.: The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. J. Mater. Sci. 48, 2934–2952 (2013)

    Article  Google Scholar 

  28. Münch, B., Holzer, L.: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91, 4059–4067 (2008)

    Article  Google Scholar 

  29. Møller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  30. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80, 1502–1517 (1992)

    Article  Google Scholar 

  31. Ross, S.: Simulation, 5th edn. Academic Press, New York (2013)

    MATH  Google Scholar 

  32. Stenzel, O., Hassfeld, H., Thiedmann, R., Koster, L.J.A., Oosterhout, S.D., van Bavel, S.S., Wienk, M.M., Loos, J., Janssen, R.A.J., Schmidt, V.: Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data. Ann. Appl. Stat. 5, 1920–1947 (2011)

    Article  MathSciNet  Google Scholar 

  33. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  34. Enke, D., Gläser, R., Tallarek, U.: Sol-gel and porous glass-based silica monoliths with hierarchical pore structure for solid-liquid catalysis. Chemie Ingenieur Technik 88(11), 1561–1585 (2016)

    Article  Google Scholar 

  35. Liasneuski, H., Hlushkou, D., Khirevich, S., Höltzel, A., Tallarek, U., Torquato, S.: Impact of microstructure on the effective diffusivity in random packings of hard spheres. J. Appl. Phys. 116(3), 034904 (2014)

    Article  Google Scholar 

  36. Hlushkou, D., Liasneuski, H., Tallarek, U., Torquato, S.: Effective diffusion coefficients in random packings of polydisperse hard spheres from two-point and three-point correlation functions. J. Appl. Phys. 118(12), 124901 (2015)

    Article  Google Scholar 

  37. Daneyko, A., Hlushkou, D., Baranau, V., Khirevich, S., Seidel-Morgenstern, A., Tallarek, U.: Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient. J. Chromatogr. A 1407, 139–156 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, M., Furat, O., Hlushkou, D., Tallarek, U., Holzer, L., Schmidt, V. (2018). On Microstructure-Property Relationships Derived by Virtual Materials Testing with an Emphasis on Effective Conductivity. In: Baum, M., Brenner, G., Grabowski, J., Hanschke, T., Hartmann, S., Schöbel, A. (eds) Simulation Science. SimScience 2017. Communications in Computer and Information Science, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-319-96271-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96271-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96270-2

  • Online ISBN: 978-3-319-96271-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics