SimScience 2017: Simulation Science pp 128-144 | Cite as

3D Microstructure Modeling and Simulation of Materials in Lithium-ion Battery Cells

  • Julian FeinauerEmail author
  • Daniel Westhoff
  • Klaus Kuchler
  • Volker Schmidt
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 889)


The microstructure of lithium-ion battery electrodes has a major influence on the performance and durability of lithium-ion batteries. In this paper, an overview of a general framework for the simulation of battery electrode microstructures is presented. A multistep approach is used for the generation of such particle-based materials. First, a ‘host lattice’ for the coarse structure of the material and the placement of particles is generated. Then, several application-specific rules, which, e.g., influence connectivity are implemented. Finally, the particles are simulated using Gaussian random fields on the sphere. To show the broad applicability of this approach, three different applications of the general framework are discussed, which allow to model the microstructure of anodes of energy and power cells as well as of cathodes of energy cells. Finally, the validation of such models as well as applications together with electrochemical transport simulation are presented.


Stochastic 3D microstructure modeling Lithium-ion cell anodes Lithium-ion cell cathodes Gaussian random fields on the sphere 


  1. 1.
    Bezrukov, A., Bargie, M., Stoyan, D.: Statistical analysis of simulated random packings of spheres. Particle Particle Syst. Charact. 19(2), 111–118 (2002)CrossRefGoogle Scholar
  2. 2.
    Chen, C.F., Mukherjee, P.P.: Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Phys. Chem. Chem. Phys. 17(15), 9812–9827 (2015)CrossRefGoogle Scholar
  3. 3.
    Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Chichester (2013)CrossRefGoogle Scholar
  4. 4.
    Cho, S., Chen, C.F., Mukherjee, P.P.: Influence of microstructure on impedance response in intercalation electrodes. J. Electrochem. Soc. 162(7), A1202–A1214 (2015)CrossRefGoogle Scholar
  5. 5.
    Dunn, J.B., Gaines, L., Barnes, M., Wang, M., Sullivan, J.: Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle. Technical report, Argonne National Laboratory (ANL) (2012)Google Scholar
  6. 6.
    Feinauer, J., Brereton, T., Spettl, A., Weber, M., Manke, I., Schmidt, V.: Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on the sphere. Comput. Mater. Sci. 109, 137–146 (2015)CrossRefGoogle Scholar
  7. 7.
    Feinauer, J., Spettl, A., Manke, I., Strege, S., Kwade, A., Pott, A., Schmidt, V.: Structural characterization of particle systems using spherical harmonics. Mater. Charact. 106, 123–133 (2015)CrossRefGoogle Scholar
  8. 8.
    Feinauer, J., Hein, S., Rave, S., Schmidt, S., Westhoff, D., Zausch, J., Iliev, O., Latz, A., Ohlberger, M., Schmidt, V.: MULTIBAT: unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction. J. Comput. Sci. (2018, in print)Google Scholar
  9. 9.
    Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M., Schmidt, V.: Stochastic 3D modeling of LSC cathodes based on structural segmentation of FIB-SEM images. Comput. Mater. Sci. 67, 48–62 (2013)CrossRefGoogle Scholar
  10. 10.
    Gaiselmann, G., Thiedmann, R., Manke, I., Lehnert, W., Schmidt, V.: Stochastic 3D modeling of fiber-based materials. Comput. Mater. Sci. 59, 75–86 (2012)CrossRefGoogle Scholar
  11. 11.
    Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M.R., Schmidt, V.: Stochastic 3D modeling of La\(_{0.6}\)Sr\(_{0.4}\)CoO\(_{3-\delta }\) cathodes based on structural segmentation of FIB-SEM images. Comput. Mater. Sci. 67, 48–62 (2013)CrossRefGoogle Scholar
  12. 12.
    Gaiselmann, G., Neumann, M., Schmidt, V., Pecho, O., Hocker, T., Holzer, L.: Quantitative relationships between microstructure and effective transport properties based on virtual materials testing. AIChE J. 60(6), 1983–1999 (2014)CrossRefGoogle Scholar
  13. 13.
    Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hein, S., Feinauer, J., Westhoff, D., Manke, I., Schmidt, V., Latz, A.: Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D. J. Power Sour. 336, 161–171 (2016)CrossRefGoogle Scholar
  15. 15.
    Kuchler, K., Westhoff, D., Feinauer, J., Mitsch, T., Manke, I., Schmidt, V.: Stochastic model of the 3D microstructure of Li-ion battery cathodes under various cyclical aging secenarios. Model. Simul. Mater. Sci. Eng. 26, 035005 (2018)CrossRefGoogle Scholar
  16. 16.
    Latz, A., Zausch, J.: Thermodynamic consistent transport theory of Li-ion batteries. J. Power Sour. 196, 3296–3302 (2011)CrossRefGoogle Scholar
  17. 17.
    Latz, A., Zausch, J.: Thermodynamic derivation of a Butler-Volmer model for intercalation in Li-ion batteries. Electrochimica Acta 110, 358–362 (2013)CrossRefGoogle Scholar
  18. 18.
    Lautensack, C., Zuyev, S.: Random Laguerre tessellations. Adv. Appl. Probab. 40(3), 630–650 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mościński, J., Bargieł, M., Rycerz, Z., Jacobs, P.: The force-biased algorithm for the irregular close packing of equal hard spheres. Mol. Simul. 3(4), 201–212 (1989)CrossRefGoogle Scholar
  20. 20.
    Münch, B., Holzer, L.: Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion. J. Am. Ceram. Soc. 91(12), 4059–4067 (2008)CrossRefGoogle Scholar
  21. 21.
    Newman, J., Thomas, K., Hafezi, H., Wheeler, D.: Modeling of lithium-ion batteries. J. Power Sour. 119, 838–843 (2003)CrossRefGoogle Scholar
  22. 22.
    Petrich, L., Westhoff, D., Feinauer, J., Finegan, D.P., Daemi, S.R., Shearing, P.R., Schmidt, V.: Crack detection in lithium-ion cells using machine learning. Comput. Mater. Sci. 136, 297–305 (2017)CrossRefGoogle Scholar
  23. 23.
    Pfaffmann, L., Birkenmaier, C., Müller, M., Bauer, W., Mitsch, T., Feinauer, J., Scheiba, F., Hintennach, A., Schleid, T., Schmidt, V., Ehrenberg, H.: Investigation of the electrochemical active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method. J. Power Sourc. 307, 762–771 (2016)CrossRefGoogle Scholar
  24. 24.
    Remmlinger, J., Tippmann, S., Buchholz, M., Dietmayer, K.: Low-temperature charging of lithium-ion cells Part II: model reduction and application. J. Power Sourc. 254, 268–276 (2014)CrossRefGoogle Scholar
  25. 25.
    Stenzel, O., Koster, L., Thiedmann, R., Oosterhout, S., Janssen, R., Schmidt, V.: A new approach to model-based simulation of disordered polymer blend solar cells. Adv. Funct. Mater. 22, 1236–1244 (2012)CrossRefGoogle Scholar
  26. 26.
    Stenzel, O., Pecho, O., Holzer, L., Neumann, M., Schmidt, V.: Predicting effective conductivities based on geometric microstructure characteristics. AIChE J. 62(5), 1834–1843 (2016)CrossRefGoogle Scholar
  27. 27.
    Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)CrossRefGoogle Scholar
  28. 28.
    Westhoff, D., Feinauer, J., Kuchler, K., Mitsch, T., Manke, I., Hein, S., Latz, A., Schmidt, V.: Parametric stochastic 3D model for the microstructure of anodes in lithium-ion power cells. Comput. Mater. Sci. 126, 453–467 (2017)CrossRefGoogle Scholar
  29. 29.
    Westhoff, D., Finegan, D.P., Shearing, P.R., Schmidt, V.: Algorithmic structural segmentation of defective particle systems: a lithium-ion battery study. J. Microsc. 270, 71–82 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Julian Feinauer
    • 1
    Email author
  • Daniel Westhoff
    • 1
  • Klaus Kuchler
    • 1
  • Volker Schmidt
    • 1
  1. 1.Institute of StochasticsUlm UniversityUlmGermany

Personalised recommendations