Advertisement

SimScience 2017: Simulation Science pp 97-111 | Cite as

Accelerated Simulation of Sphere Packings Using Parallel Hardware

  • Zhixing Yang
  • Feng Gu
  • Thorsten Grosch
  • Michael KolonkoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 889)

Abstract

The simulation of dry particle packings and their geometrical properties is of great importance to material sciences. Substantial acceleration of the simulation can be obtained using parallel hardware (GPU), but this requires specialized data structures and algorithms. We present a parallel version of the so-called collective rearrangement algorithm that allows to simulate random close packings of up to several million spherical particles from an arbitrary particle size distribution. The empirical time complexity of our implementation is almost linear in the number of spheres.

Notes

Acknowledgments

Zhixing Yang is supported by the Dres. Edith und Klaus Dyckerhoff-Stiftung, grant number T218/26441 /2015. Feng Gu receives a scholarship of the Simulation Science Center Clausthal-Göttingen within the project ‘Virtual Microscope’.

References

  1. 1.
    Bezrukov, A., Bargiel, M., Stoyan, D.: Statistical analysis of simulated random packings of spheres. Part. Part. Syst. Charact. 19(2), 111–118 (2002)CrossRefGoogle Scholar
  2. 2.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  3. 3.
    Green, S.: Particle simulation using CUDA. NVIDIA Whitepaper 6, 121–128 (2010)Google Scholar
  4. 4.
    Gu, F., Yang, Z., Kolonko, M., Grosch, T.: Interactive visualization of gaps and overlaps for large and dynamic sphere packings. In: Hullin, M., Klein, R., Schultz, T., Yao, A. (eds.) Vision, Modeling & Visualization. The Eurographics Association (2017)Google Scholar
  5. 5.
    He, D., Ekere, N.N., Cai, L.: Computer simulation of random packing of unequal particles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 60(6), 7098–7104 (1999)CrossRefGoogle Scholar
  6. 6.
    Kolonko, M., Raschdorf, S., Wäsch, D.: A hierarchical approach to simulate the packing density of particle mixtures on a computer. Granular Matter 12(6), 629–643 (2010)CrossRefGoogle Scholar
  7. 7.
    de Larrard, F., Sedran, T.: Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 24(6), 997–1009 (1994)CrossRefGoogle Scholar
  8. 8.
    Mock, S.: Simulation von hoch polydispersen zufällig dichten Partikelpackungen unter Berücksichtigung der Agglomeration im Feinstkornbereich. Ph.D. thesis, Institute for Applied Stochastics and OR, University of Technology Clausthal, Germany (2015)Google Scholar
  9. 9.
    Raschdorf, S., Kolonko, M.: A comparison of data structures for the simulation of polydisperse particle packings. Int. J. Numer. Methods Eng. 85(5), 625–639 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schmidt, M., Fehling, E., Geisenhanslüke, C. (eds.): Ultra High Performance Concrete (UHPC) - Proceedings of the International Symposium on UHPC, Schriftenreihe Baustoffe und Massivbau - Structural Materials and Engineering Series, vol. 3. Kassel University Press, Kassel (2004)Google Scholar
  11. 11.
    Topic, N., Pöschel, T.: Steepest descent ballistic deposition of complex shaped particles. J. Comput. Phys. 308, 421–437 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Torquato, S.: Random Heterogenous Materials: Microstructure and Macroscopic Properties, Interdisciplinary Applied Mathematics, 2nd edn., vol. 16. Springer, New York (2006)Google Scholar
  13. 13.
    Weisstein, E.W.: Sphere-sphere intersection. In: MathWorld. Wolfram Research, Inc. (2007) http://mathworld.wolfram.com/Sphere-SphereIntersection.html
  14. 14.
    Weller, R., Frese, U., Zachmann, G.: Parallel collision detection in constant time. In: Bender, J., Dequidt, J., Duriez, C., Zachmann, G. (eds.) Workshop on Virtual Reality Interaction and Physical Simulation. The Eurographics Association (2013)Google Scholar
  15. 15.
    Yu, A.B., Standish, N.: Estimation of the porosity of particle mixtures by a linear-mixture packing model. Ind. Eng. Chem. Res. 30(6), 1372–1385 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhixing Yang
    • 1
  • Feng Gu
    • 1
  • Thorsten Grosch
    • 1
  • Michael Kolonko
    • 1
    Email author
  1. 1.Institute of Applied Stochastics and Operations Research and Institute of Computer ScienceUniversity of Technology ClausthalClausthal-ZellerfeldGermany

Personalised recommendations