Combining Simulation and Optimization for Extended Double Row Facility Layout Problems in Factory Planning

  • Uwe Bracht
  • Mirko DahlbeckEmail author
  • Anja Fischer
  • Thomas Krüger
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 889)


We investigate the so called Double Row Facility Layout Problem (DRFLP). Given a set of departments with given lengths and pairwise transport weights between them, the aim is to assign the departments to two rows such that the weighted sum of the distances between them is minimized and such that the departments do not overlap. The DRFLP is known to be rather challenging. Even with the best approach known in literature, which is based on an enumeration over all row assignments of the departments and where only the center-to-center distances are measured, the largest instance solved to optimality contains only 16 departments. In this paper we show how the existing models can be extended in various directions in order to handle more aspects that are important in real-world applications such as vertical distances between the departments and restricting the size of the layout area. We also show how the structure of real-world instances, which often contain several departments of the same type, can be exploited in mathematical optimization. This allows us to solve a realistic instance with 21 departments in reasonable time. Furthermore, we propose a new approach which combines optimization and simulation. Here simulation allows the evaluation of the optimized solutions with respect to several performance indicators which play an important role for a smooth production apart from the weighted transport distances. If problems are detected, this information is included in the mathematical models by extending these.


Facility layout problem Exact solution Simulation 



This work was supported by the Simulation Science Center Clausthal-Göttingen.


  1. 1.
    Altinkilinc, M.: Simulation-based layout planning of a production plant. In: Proceedings of the 36th Conference on Winter simulation, pp. 1079–1084 (2004)Google Scholar
  2. 2.
    Amaral, A.R.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amaral, A.R.: Optimal solutions for the double row layout problem. Optim. Lett. 7(2), 407–413 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anjos, M.F., Vieira, M.V.: Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur. J. Oper. Res. 261(1), 1–16 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arnhold, D.: Digitale Produktionsprozessplanung variantenreicher Produkte unter Berücksichtigung von intervallbasierten Eingangsdaten. Shaker (2013)Google Scholar
  6. 6.
    Blu, T., Thévenaz, P., Unser, M.: Linear interpolation revitalized. IEEE Trans. Image Process. 13(5), 710–719 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bracht, U., Fischer, A., Krüger, T.: Mathematische Anordnungsoptimierung und Simulation - ein kombinierter Ansatz zur Fabriklayoutplanung. Werkstattstechnik online 107(4), 200–207 (2017)Google Scholar
  8. 8.
    Bracht, U., Geckler, D., Wenzel, S.: Digitale Fabrik: Methoden und Praxisbeispiele. Springer, Deutschland (2011). Scholar
  9. 9.
    Chung, J., Tanchoco, J.: The double row layout problem. Int. J. Prod. Res. 48(3), 709–727 (2010)CrossRefGoogle Scholar
  10. 10.
    Dombrowski, U., Ernst, S.: Scenario-based simulation approach for layout planning. Procedia CIRP 12, 354–359 (2013)CrossRefGoogle Scholar
  11. 11.
    Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: a survey. Ann. Rev. Control 31(2), 255–267 (2007)CrossRefGoogle Scholar
  12. 12.
    Fischer, A., Fischer, F., Hungerländer, P.: New exact approaches to row layout problems. Technical report 2015–11, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen (2015)Google Scholar
  13. 13.
    Hungerländer, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Comput. Optim. Appl. 55(1), 1–20 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Math. Program. 140(1), 77–97 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    IBM ILOG CPLEX Optimization Studio 12.7 (2017)Google Scholar
  16. 16.
    Kettner, H., Schmidt, J., Greim, H.-R.: Leitfaden der systematischen Fabrikplanung. Hanser München (1984)Google Scholar
  17. 17.
    Murray, C.C., Smith, A.E., Zhang, Z.: An efficient local search heuristic for the double row layout problem with asymmetric material flow. Int. J. Prod. Res. 51(20), 6129–6139 (2013)CrossRefGoogle Scholar
  18. 18.
    Prêt, U.: Komplexes Fallbeispiel Teilefertigungs- und Montageprojekt “Schneckengetriebeproduktion” (2017). Accessed 06 Apr 2018
  19. 19.
    Rooks, T.: Rechnergestützte Simulationsmodellgenerierung zur dynamischen Absicherung der Montagelogistikplanung bei der Fahrzeugneutypplanung im Rahmen der digitalen Fabrik. Shaker (2009)Google Scholar
  20. 20.
    Schmigalla, H.: Fabrikplanung: Begriffe und Zusammenhänge. Hanser Verlag (1995)Google Scholar
  21. 21.
    Scholz, D., Petrick, A., Domschke, W.: STaTS: a slicing tree and tabu search based heuristic for the unequal area facility layout problem. Eur. J. Oper. Res. 197(1), 166–178 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Simmons, D.M.: One-dimensional space allocation: an ordering algorithm. Oper. Res. 17(5), 812–826 (1969)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tecnomatrix Plant Simulation. Siemens PLM Software (2017)Google Scholar
  24. 24.
    Zhang, Z., Murray, C.C.: A corrected formulation for the double row layout problem. Int. J. Prod. Res. 50(15), 4220–4223 (2012)CrossRefGoogle Scholar
  25. 25.
    Zuo, X., Murray, C.C., Smith, A.E.: Solving an extended double row layout problem using multiobjective tabu search and linear programming. IEEE Trans. Autom. Sci. Eng. 11(4), 1122–1132 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Uwe Bracht
    • 1
  • Mirko Dahlbeck
    • 2
    • 3
    Email author
  • Anja Fischer
    • 3
  • Thomas Krüger
    • 1
  1. 1.Technische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2.Georg-August-Universität GöttingenGöttingenGermany
  3. 3.Technische Universität DortmundDortmundGermany

Personalised recommendations