Skip to main content

Optical Manipulation of Otoliths In-Vivo

  • Chapter
  • First Online:
  • 353 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Despite the light scattering that occurs in biological tissues, in-vivo optical trapping is possible, and has been demonstrated for targets such as red blood cells [1] and nanoparticles [2]. Those studies show that OT can trap and manipulate small objects in free flowing channels in relatively shallow tissue (50 \(\upmu \)m) without any correction to the incoming beam.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li, Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4, 1768 (2013)

    Article  Google Scholar 

  2. P.L. Johansen, F. Fenaroli, L. Evensen, G. Griffiths, G. Koster, Optical micromanipulation of nanoparticles and cells inside living zebrafish. Nat. Commun. 7 (2016)

    Google Scholar 

  3. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810 (2003)

    Article  ADS  Google Scholar 

  4. J.E. Curtis, B.A. Koss, D.G. Grier, Dynamic holographic optical tweezers. Opt. Commun. 207(1–6), 169 (2002)

    Article  ADS  Google Scholar 

  5. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, J. Leach, Independent polarisation control of multiple optical traps. Opt. Express 16(20), 15897 (2008)

    Article  ADS  Google Scholar 

  6. K. Visscher, G.J. Brakenhoff, J.J. Krol, Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14(2), 105 (1993)

    Article  Google Scholar 

  7. C. Bustamante, Y.R. Chemla, J.R. Moffitt, High-resolution dual-trap optical tweezers with differential detection: instrument design. Cold Spring Harbor Protoc. 2009(10), pdb.ip73 (2009)

    Google Scholar 

  8. S. Rancourt-Grenier, M.T. Wei, J.J. Bai, A. Chiou, P.P. Bareil, P.L. Duval, Y. Sheng, Dynamic deformation of red blood cell in dual-trap optical tweezers. Opt. Express 18(10), 10462 (2010)

    Article  ADS  Google Scholar 

  9. W. Mo, F. Chen, A. Nechiporuk, T. Nicolson, Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci. 11(1), 1 (2010)

    Article  Google Scholar 

  10. A.H. Groneberg, U. Herget, S. Ryu, R.J. De Marco, Positive taxis and sustained responsiveness to water motions in larval zebrafish. Front. Neural Circ. 9, 9 (2015)

    Google Scholar 

  11. I.H. Bianco, L.H. Ma, D. Schoppik, D.N. Robson, M.B. Orger, J.C. Beck, J.M. Li, A.F. Schier, F. Engert, R. Baker, The tangential nucleus controls a gravito-inertial vestibulo-ocular reflex. Curr. Biol. 22(14), 1285 (2012)

    Article  Google Scholar 

  12. K.D. Wulff, D.G. Cole, R.L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, M.J. Padgett, Aberration correction in holographic optical tweezers. Opt. Express 14(9), 4169 (2006)

    Article  ADS  Google Scholar 

  13. H.I.C. Dalgarno, T. Cizmar, T. Vettenburg, J. Nylk, F.J. Gunn-Moore, K. Dholakia, Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. 100(19), 191108 (2012)

    Article  ADS  Google Scholar 

  14. M. Nixon, O. Katz, E. Small, Y. Bromberg, A.A. Friesem, Y. Silberberg, N. Davidson, Real-time wavefront shaping through scattering media by all-optical feedback. Nat. Photonics 7(11), 919 (2013)

    Article  ADS  Google Scholar 

  15. T.R. Thiele, J.C. Donovan, H. Baier, Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83(3), 679 (2014)

    Article  Google Scholar 

  16. F.O. Fahrbach, F.F. Voigt, B. Schmid, F. Helmchen, J. Huisken, Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21(18), 21010 (2013)

    Article  ADS  Google Scholar 

  17. O. Randlett, C.L. Wee, E.A. Naumann, O. Nnaemeka, D. Schoppik, J.E. Fitzgerald, R. Portugues, A.M.B. Lacoste, C. Riegler, F. Engert, A.F. Schier, Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12(11), 1039 (2015)

    Article  Google Scholar 

  18. V. Malafoglia, M. Colasanti, W. Raffaeli, D. Balciunas, A. Giordano, G. Bellipanni, Extreme thermal noxious stimuli induce pain responses in zebrafish larvae. J. Cell. Physiol. 229(3), 300 (2014)

    Article  Google Scholar 

  19. M. Haesemeyer, D.N. Robson, J.M. Li, A.F. Schier, F. Engert, The structure and timescales of heat perception in larval zebrafish. Cell Syst. 1(5), 338 (2015)

    Article  Google Scholar 

  20. S.L. Smith, M. Hausser, Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13(9), 1144 (2010)

    Article  Google Scholar 

  21. K.D. Harris, R.Q. Quiroga, J. Freeman, S.L. Smith, Improving data quality in neuronal population recordings. Nat. Neurosci. 19(9), 1165 (2016)

    Article  Google Scholar 

  22. P. Kaifosh, J.D. Zaremba, N.B. Danielson, A. Losonczy, SIMA: Python software for analysis of dynamic fluorescence imaging data. Frontiers Neuroinformatics 8, 80 (2014)

    Article  Google Scholar 

  23. E.A. Mukamel, A. Nimmerjahn, M.J. Schnitzer, Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63(6), 747 (2009)

    Article  Google Scholar 

  24. E.A. Pnevmatikakis, D. Soudry, Y. Gao, T.A. Machado, J. Merel, D. Pfau, T. Reardon, Y. Mu, C. Lacefield, W. Yang, M. Ahrens, R. Bruno, T.M. Jessell, D.S. Peterka, R. Yuste, L. Paninski, Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89(2), 285 (2016)

    Article  Google Scholar 

  25. G.E. Meredith, A.B. Butler, Organization of eighth nerve afferent projections from individual endorgans of the inner ear in the teleost, astronotus ocellatus. J. Comp. Neurol. 220(1), 44 (1983)

    Article  Google Scholar 

  26. C.A. McCormick, The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J. Morphol. 171(2), 159 (1982)

    Article  Google Scholar 

  27. W. Plassmann, Sensory modality interdependence in the octaval system of an elasmobranch. Exp. Brain Res. 50(2–3), 283 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itia Amandine Favre-Bulle .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favre-Bulle, I.A. (2018). Optical Manipulation of Otoliths In-Vivo. In: Imaging, Manipulation and Optogenetics in Zebrafish. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96250-4_6

Download citation

Publish with us

Policies and ethics